Aperçu d'une catégorisation générale de concepts pour des systèmes formels (et donc de travaux sur ces systèmes ; illustrations pour le LIM)


Philippe Martin

LIM,  Université de La Réunion


www.phmartin.info/slides/lim2024/


Plan
0. Introduction 0.1. Buts de la Représentation de Connaissances (RC) [KR] 0.2. Exemples de "processus liés à la RC" (Pr_RCs) [KPs] 0.3. Types de plus haut niveaux
1. Les "objets de description" [Description Objects] 1.0. Langages formels (= modèles et/ou notations) 1.1. Expressions (types, ...) / phrases (affirmations, procédures, règles, bases, ...) 1.1.1. Règles/bases/... pour le partage de connaissances et la coopération 1.1.2. Logiciels(+applications) pour les Pr_RCs (au LIM)
2. Caractéristiques (ou attributs ou critères) 2.1. Caractéristiques logiques/computationnelles
3. Conclusion : usages possibles du type de catégorisation introduite dans ce document

0.1. Buts de la Représentation de Connaissances (RC) [KR]


0.2. Exemples de "processus liés à la représentation de connaissances" (Pr_RCs) [KPs]


En anglais  (avec "K." abréviant "Knowledge") :




→ pas de relations (de spécialisation, sous-partie, ...) bien définies, intuitives, non-arbitraires

      → pas de catégorisation (de Pr_RCs) passant à l'échelle

Heureusement, une catégorisation des objets sur lesquels portent ces Pr_RCs peut passer à l'échelle.

0.3. Types de plus haut niveaux


En FL :

Thing = owl#Thing, \. p{ (
Situation = ^"Thing occurring",
\. v_p{ State = ^"Situation not seen as a process", (
Process
\. (Knowledge-representation_related_process = KP)
) }
) (
Entity
\. p{ (Characteristic_or_attribute_or_measure \. Logic-or-computational_characteristic ) (Endurant //Thing retaining its identity across points in time \. p{ (Spatial_entity = Entity_with_dimension-or-location_in_a_space) Non-spatial_endurant }) }
) }.
    En Formalized-English :
pm#Thing is equal to owl#Thing and has for `subtype partition´ the set { `
Situation which is equal to ^"Thing occurring"
and which has for `viewpoint subtype partition´ the set { `State = ^"Situation not seen as a process"´, `
Process
which has for subtype `Knowledge-representation_related_process which is equal to KP
´ }
´, `
Entity
which has for `subtype partition´ the set { `Attribute_or_characteristic_or_measure which has for subtype Logic-or-computational_characteristic´, `Endurant which has for `subtype partition´ the set { `Spatial_entity which is equal to Entity_with_dimension-or-location_in_a_space´, Non-spatial_endurant }´ }
´ }.

En UML étendu et concis :

Thing = owl#Thing ____|________{complete, disjoint} | |
Situation
= ^"Thing occurring"
Entity
{complete, disjoint} ________________|__________________________ | | Attribute_or_characteristic_or_measure Endurant △ △ {complete, disjoint} | ____|____________________ Logic-or-computational_characteristic | | Spatial_entity Non-spatial_endurant

En UML horizontal, étendu et concis :

Thing = owl#Thing ◁—P—
Situation
= ^"Thing occurring" ◁—V_P—
State = ^"Situation not seen as a process"
Process
Entity
◁—P—
Attribute_or_characteristic_or_measure
Endurant
◁—P—
Spatial_entity
Non-spatial_endurant

1. Les "objets de description" [Description Objects]


En FL :

Description_content-or-instrument-or-result-or-container = Description_object, /^ Non-spatial_endurant, \. p{ Description_semantic-content (
Description_instrument-or-result = Information_object
, \. p{ (Expression \. Type) (Sentence = Statement) } c{ (Description_instrument \. e{ (Language \. e{ Formal_language Informal_language } ) (Deductive_system = Proof_system Formal-logic_system) (Formal_system part: 1..* Formal_language 1..* Deductive_system ) }) (Description_result = Represented_information, \. v_p{ (Represented_data \. Database) (Represented_Knowledge = Knowledge_representation KR, \. KB) } (Specification \. p{ Entity_specification (Situation_specification \. (Process_specification \. (
Software_or_software-specification
\. p{ Software_specification (Software \. p{ (Software_for_KPs \. (Knowledge_management_system = KBMS, object: 1..* KB ) ^`Software for evaluating logic or computational characteristics´ ) (Software_not_for_KPs \. (Database_management_system = DBMS, object: 1..* Database ) ) }) }
) ) ) }) ) }
) (Description_container \. e{ File Memory_area }) }.

1.0. Langages formels (= modèles et/ou notations)


Formal_language part: 1 (Language_model part: 1 Abstract_grammar 1 Semantic_model) 1 (Language_notation = Concrete_grammar), \. e{ (Formal_language_only_for_asserting //"only": so not FE and FL \. e{ (Knowledge_representation_language = KRL, \. JSON-LD) (Data_structuration_language \. JSON XML HTML) }) (Formal_language_only_for_querying \. SQL SPARQL) (Formal_language_only_for_transforming_information \. XSLT) (Formal_language_only_for_presenting_information \. CSS) }. //+ mixing/indexing data with KRs //+ configurating+translating between KRLs



<pre>
                       <b>KRL_model</b>
      <u>                    <big><big>↑</big></big>                 </u>
     |                                      | 
FOL-or-less_logic_based_model<small> <--<i>has_part</i>--</small> HOL_based_model
     <big><big>↑            ↖              ↑</big></big>
FOL_part_of_OWL2 <small><--<i>has_part</i>--</small> FOL_based_model       RIF    
                          <big><big>↗  ↑         ↗   ↖</big></big>
                        CL  KIF_model  RIF-FLD<small>--<i>has_part</i>--></small>RIF-BLD </pre>



<pre>
                      <b>KRL_notation</b>
           <u>              <big><big>↑</big></big>           </u>
          |                          |
   Graph-based_notation    Positional_or_name-based_notation
     <big><big>↑        ↖                ↑</big></big>
Frame-based_notation  XML_based_notation  LISP-like_notation
     <big><big>↑       ↑    ↑            ↑      ↑</big></big>
Turtle<small> <--<i>has_part</i>-- </small>N3    RIF-FLD/XML         KIF_notation  CLIF </pre>

1.1. Expressions (types, ...) / phrases (affirmations, procédures, règles, bases, ...)

La plupart des concepts utilisés à propos de systèmes formels (dont celles d'Anil, Fred, ...)
sont des sous-types de  Description_instrument-or-result
ou de  Logic-or-computational_characteristic  (cf section 2.1).

Une fois ces types définis, les méthodes/règles de résolutions de problèmes
peuvent être représentées via des définitions de ces types
ou de types de processus de résolutions de problèmes.



Étapes pour la création d'une RC pour un partage de connaissances passant à l'échelle :

1.1.1. Règles/bases/... pour le partage de connaissances et la coopération


1.1.2. Logiciels(+applications) pour les Pr_RCs (au LIM)


Software_at_least_partially_created_by_at_least_one_member_of_the_LIM_of_the_UR /^ Software, \. p{ (Software_for_KPs_at_least_partially_created_by_at_least_one_member_of_the_LIM_of_the_UR /^ Software_for_KPs, \. (^`Software for evaluating logic or computational characteristics created_by_at_least_one_member_of_the_LIM_of_the_UR´ /^ ^`Software for evaluating logic or computational characteristics´, \. ^`The NTI+cTI software ranked 1st at TermComp 2022, 2023´ ) (KBMS_created_by_at_least_one_member_of_the_LIM_of_the_UR /^ KBMS, \. WebKB-1 WebKB-2 IKBS ) ) (Software_not_for_KPs_at_least_partially_created_by_at_least_one_member_of_the_LIM_of_the_UR \. ^`User Interface created_by_at_least_one_member_of_the_LIM_of_the_UR´ ) }.

2.1. Caractéristiques logiques/computationnelles


Logic-or-computational_characteristic \. c{ //'c': complete, not exclusive (
Formal-logic-system_characteristic
.[0..1 Formal-logic_system ?ls, 0..1 Property ?p -> ?attr] ?attr \. (
Logical-system_soundness
:=> "In a sound logical system ?ls, every satisfiable theory is consistent (i.e., does not lead to a logical contradiction), but the converse only holds if ?ls is complete" \. (Logical-system_soundness_wrt_a_property := "a logical system ?ls is sound with respect to a property if each of its theorems has that property", \. (Logical-system_completeness_relative-to-a-property _(Semantical_validity) = Logical-system_weak_soundness, //Tautologousness := "every sentence (well-formed formula) ?s that can be proved in the logical system ?ls is logically valid wrt. the semantics of ?ls (i.e, is also true on all interpretations or structures of the semantic theory for the language ?l upon which ?ls is based): all its theorems are tautologies; formally: ⊦?ls ?s; → ⊧?ls ?s;", converse: Logical-system_semantic-completeness, //see below \. (Logical-system_strong-soundness := "any sentence ?s of the language ?l upon which the logical system ?ls is based that is derivable from a set ?ss of sentences of ?l is also a logical consequence of ?ss, in the sense that any model that makes all members of ?ss true will also make ?s true; formally: ?ss ⊦?ls ?s → ?ss ⊧?ls ?s" ) ) )
) (
Logical-system_completeness
\. (Functional_completeness := "a logical system is functionally complete if it has the logical connectives to express all predicates, hence all 16 truth tables") (Logical-system_completeness_wrt_a_property := "a logical system ?ls is called complete with respect to a particular property ?p if every formula having the property can be derived using that system, i.e. is one of its theorems", \. (Logical-system_completeness_relative-to-a-property _(Semantical_validity) = Logical-system_semantic-completeness, //Tautologousness := "?ls can derive every tautology (i.e., every formula ?s that is true): all its tautologies are also its theorems; formally:?ls ?s → ⊦?ls ?s", //Gödel's completeness theorem establishes semantic completeness for first-order logic \. (Logical-system_refutation-completeness := "for every unsatisfiable set (of formulas) ?ss, the logical system ?ls is able to derive false; formally: ?ss ⊧?ls ⊥ → ?ss ⊦?ls ⊥" \. (Logical-system_strong-completeness := "for every set of premises ?ss, any formula ?s that semantically follows from ?ss is derivable from ?ss; formally: ?ss ⊧?ls ?s → ?ss ⊦?ls ?s" ) ) (Logical-system_syntactical-completeness = Logical-system_deductive-completeness Logical-system_maximal-completeness Logical-system_negation-completeness, := "for each sentence (closed formula) ?s of the language of the logical system ?ls, either ?s or ¬?s is a theorem of ?ls" ) ) )
) (Logical-system_computational-characteristic \. Logical-system_decidability )
) (
Computational_characteristic
.[0..1 Software_or_software-specification ?ls, 0..1 Property ?p -> ?attr] ?attr \. ne{ (Complexity-or-decidability-or-termination_related_characteristic \. Logical-system_decidability Program_termination Computational_complexity ) (Software_correctness_wrt_a_specification .[0..1 Software, Software_specification ?ss -> ?attr] ?attr \= (Software_partial-correctness_wrt_a_specification :=> "if an answer is returned, it is correct", \. (Software_total-correctness_wrt_a_specification :=> "an answer is returned and it is correct" ) ), \. (Software_functional-correctness_wrt_a_specification = ^"Software_correctness_wrt_a_specification restricted to inputs and outputs: for each input, the software must produce an output satisfying the specification" ) ) } Logic-program_algorithmic-characteristic
) }.

3. Conclusion : usages possibles du type de catégorisation introduite dans ce document