Relation pm#relation_between_collections (pm#collection,pm#collection+)
supertype: pm#relation_from_collection pm#relation_to_collection
subtype: pm#sub_collection__subcollection (pm#collection,pm#collection) a partial order relation
subtype: pm#ending_collection (pm#collection,pm#collection)
subtype: pm#final_segment__finalsegment (pm#collection,pm#collection) the second collection is a final segment of the 1st
subtype: kif#sublist__final_segment_of__finalsegmentof (sumo#list,sumo#list) USE pm#final_segment INSTEAD OF THIS RELATION TYPE; "sublist" is a misleading name; "final_segment_of" is better
subtype: pm#sub_collection_of (pm#collection,pm#collection) DO NOT use this type; it only exists because the SUMO does not respect common reading conventions of parameters
subtype: sumo#sub_collection__subcollection__sub_collection_of (sumo#collection,sumo#collection) the 1st collection is a proper part of the 2nd
subtype: sumo#sub_list__sublist__sub_list_of (sumo#list,sumo#list) the 1st argument is a sublist of the 2nd, i.e. every element of the 1st is an element of the 2nd and the elements that are common to both lists have the same order in both lists
subtype: sumo#initial_list__initiallist (sumo#list,sumo#list) the 1st argument (?L1) is a sublist of the 2nd (?L2), and (sumo#list_order_fn ?L1 ?NUMBER) returns the same value as (sumo#list_order_fn ?L2 ?N) for all of the values of ?N over which (sumo#list_order_fn ?L1 ?N) is defined
subtype: pm#final_segment_of__finalsegmentof (pm#collection,pm#collection) USE pm#final_segment INSTEAD
subtype: kif#sublist__final_segment_of__finalsegmentof (sumo#list,sumo#list) USE pm#final_segment INSTEAD OF THIS RELATION TYPE; "sublist" is a misleading name; "final_segment_of" is better
subtype: pm#overlapping_collection__overlappingcollection (pm#collection,pm#collection)
subtype: pm#not_overlapping_collection__notoverlappingcollection (pm#collection,pm#collection)
subtype: pm#collection_complement (pm#collection,pm#collection)
subtype: kif#rest (sumo#list -> sumo#list)
subtype: rdf#rest (rdf#list -> rdf#list)
subtype: kif#append (sumo#list,sumo#list -> sumo#list)
subtype: sumo#list_concatenate_fn (sumo#list,sumo#list -> sumo#list) returns the concatenation of two lists
subtype: kif#revappend (sumo#list,sumo#list -> sumo#list)
subtype: kif#reverse (sumo#list -> sumo#list)
subtype: pm#relation_from_type_to_collection (pm#type,pm#collection)
subtype: pm#partition (pm#type,pm#collection)
subtype: pm#instances__instance (pm#type -> pm#collection)
subtype: pm#subtypes (pm#type -> pm#collection)
subtype: pm#relation_from_class_to_collection (rdfs#class,pm#collection)
subtype: owl#union_of__unionof (rdfs#class,rdf#list) for unionOf(X,L) read: X is the union of the classes in the list L; i.e. if something is in any of the classes in L, it is in X, and vice versa
subtype: daml#disjoint_union_of (rdfs#class,rdf#list) for disjointUnionOf(X,L) read: X is the disjoint union of the classes in the list L: (a) for any c1 and c2 in L, disjointWith(c1,c2), and (b) i.e. if something is in any of the classes in L, it is in X, and vice versa
subtype: owl#intersection_of (rdfs#class,rdf#list) for intersectionOf(X,Y) read: X is the intersection of the classes in the list Y; i.e. if something is in all the classes in Y, then it's in X, and vice versa
subtype: owl#one_of__oneof (rdfs#class,rdf#list) for oneOf(C,L) read everything in C is one of the things in L
subtype: owl#distinct_members (owl#all_different,rdf#list)
subtype: pm#relation_to_another_class (rdfs#class,rdfs#class+)
subtype: rdfs#sub_class_of__subclassof__super_class__superclas (rdfs#class,rdfs#class) in WebKB, use the link '<'
subtype: owl#equivalent_class (rdfs#class,rdfs#class) in WebKB, use the link '='
subtype: pm#exclusive_class__exclusiveclas (rdfs#class,rdfs#class) the 2 classes have no common subtype/instance; in WebKB, use the link '!'
subtype: pm#complement_class (rdfs#class -> rdfs#class) if something is not in one of the classes, then it is in the other, and vice versa; in WebKB, use the link '/'
subtype: daml#restricted_by (rdfs#class,owl#restriction)
subtype: sumo#disjoint_decomposition (sumo#class,sumo#class+) a disjoint_decomposition of a class C is a set of mutually disjoint subclasses of C
subtype: sumo#partition (sumo#class,sumo#class+) a partition of a class C is a set of mutually disjoint classes (a subclass partition) covering C; each instance of C is instance of exactly one of the subclasses in the partition
subtype: sumo#exhaustive_decomposition (sumo#class,sumo#class+) an exhaustive_decomposition of a class C is a set of subclasses of C such that every instance of C is an instance of one of the subclasses in the set; note: this does not necessarily mean that the elements of the set are disjoint (see sumo#partition - a partition is a disjoint exhaustive decomposition)
subtype: sumo#partition (sumo#class,sumo#class+) a partition of a class C is a set of mutually disjoint classes (a subclass partition) covering C; each instance of C is instance of exactly one of the subclasses in the partition
subtype: pm#relation_to_another_set_or_class (pm#set_or_class,pm#set_or_class+) this category is needed to group SUMO relations between classes which cannot be subtype of pm#relation_from_type because their signatures curiously also involve sets
subtype: pm#disjoint (pm#set_or_class,pm#set_or_class) like sumo#disjoint but from a a pm#set_or_class to another
subtype: sumo#disjoint (sumo#set_or_class,sumo#set_or_class) classes are exclusive/disjoint only if they share no instance (and hence no subtype), i.e. just in case the result of applying sumo#intersection_fn to them is empty
subtype: pm#exclusive_class__exclusiveclas (rdfs#class,rdfs#class) the 2 classes have no common subtype/instance; in WebKB, use the link '!'
subtype: pm#subclass_of_or_equal (pm#set_or_class,pm#set_or_class)
subtype: sumo#subclass__subclass_of (sumo#set_or_class,sumo#set_or_class) if the common reading conventions of parameters had been respected, this type would have been named subclass_of; every instance of the 1st argument is also an instance of the 2nd argument; a class may have multiple superclasses and subclasses
subtype: sumo#immediate_subclass__immediate_subclass_of (sumo#set_or_class,sumo#set_or_class) the 1st argument is a subclass of the 2nd argument and there is no other subclass of the 2nd argument such that the 1st is also a subclass of the 2nd; in WebKB, use the link '<'
subtype: rdfs#sub_class_of__subclassof__super_class__superclas (rdfs#class,rdfs#class) in WebKB, use the link '<'
subtype: sumo#power_set_fn__powersetfn (sumo#set_or_class -> sumo#set_or_class) maps the argument to the set_or_class of all its subclasses
subtype: pm#relation_to_another_class (rdfs#class,rdfs#class+)
subtype: pm#relation_to_another_ontology (pm#ontology,pm#ontology)
subtype: owl#backward_compatible_with (pm#ontology,pm#ontology)
subtype: owl#incompatible_with (pm#ontology,pm#ontology)
subtype: owl#prior_version__priorversion (pm#ontology,pm#ontology)