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Abstract. The difficulty of representing and organizing knowledge in reasonably
complete ways raises at least two research questions: “how to check that particular
relations are systematically used not just whenever possible but whenever relevant
for knowledge providers?” and “how to extend best practices, ontology patterns or
methodologies advocating the systematic use of particular relations and, at the
same time, automatize the checking of compliance with these methods?”. As an
answer, this article proposes a generic “ontology design rule” (ODR). A general
formulation of this generic ODR is: in a given KB, for each pair of knowledge
base objects (types or individuals) of a given set chosen by the user of this ODR,
there should be either statements connecting these objects by relations of particular
given types or statements negating such relations. This article further specifies this
ODR and shows its interests for subtype relations and other transitive relations,
e.g. part relations and specialization relations with genus & differentia. This article
shows how this ODR can be implemented via OWL and SPARQL, at least for
common simple cases (and, generically, via an higher-order logic based language).

Keywords: Ontology Design Patterns, Ontology Completeness, OWL, SPARQL.

1 Introduction

Representing and organizing knowledge within or across knowledge bases (KBs) is a
fundamental and difficult task for knowledge sharing and inferencing, and thereby for
knowledge retrieval and exploitation. At least three kinds of research avenues (relevant
to  refer  to  in  this  article)  guide  this  task.  The  first  are  ontologies  made for  reuse
purposes (with methodologies implicitly or explicitly based on these ontologies, e.g. the
Ontoclean  methodology):  foundational  ontologies  such  as  DOLCE and  BFO;  task-
oriented ones such as OWL-S; general ones such as DBpedia and Schema.org; domain-
oriented ones such as those from BioPortal. The second are catalogs of best practices [1,
2]  and  ontology patterns  [3,  4]  or  anti-patterns  [5, 6]. The  third  are  ontology/KB
evaluation  criteria  and  measures  [7],  e.g.  for  knowledge  connectedness,  precision,
consistency, conciseness and completeness. The results of these three kinds of research
avenues are especially helpful for building reusable ontologies.

http://www.semantic-web-journal.net/system/files/swj773.pdf
http://liris.cnrs.fr/Documents/Liris-4441.pdf
https://doi.org/10.1016/j.datak.2017.03.004
http://patterns.dataincubator.org/book/
http://www.i3s.unice.fr/~faron/
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 These three kinds of research avenues advocate the use of relations of particular
types between objects of particular types. In the RDF terminology, one would say that
these  three  kinds  of  research  avenues  advocate  the  use  of  properties  to  connect
resources of particular classes – e.g. the use of subClassOf or equivalentClass relations
between classes  or  other  objects,  whenever this is  relevant.  However,  often,  only a
knowledge provider knows when it is relevant to use a particular property. This limits
the  possibilities  of  checking  or  guiding  the  use  of  the  advocated  properties.
Furthermore, it may also be useful that the knowledge provider represents when the
advocated  properties  do  not  or  cannot  occur.  E.g.,  representing  disjointWith  or
complementOf relations between classes to express that subClassOf or equivalentClass
relations  cannot  occur  between  these  classes  has  many  advantages  that  Section 2
illustrates. Using all these relations is especially useful between top-level classes since
many  inference  engines  can  exploit  the  combination  of  these  relations,  e.g.  via
inheritance mechanisms.  Finally, checking that particular relations are represented as
either  existing  or  forbidden  can  be  done  automatically.  Thus,  as  an  answer  to  the
research questions “how to check that particular relations are systematically used not
simply  whenever  this  is  possible  but  whenever  this  is  relevant  for  the  knowledge
providers?” and “how to extend best practices, ontology patterns or methodologies that
advocate the systematic use of particular relations, and make the compliance with these
methods easier to check?”, this article proposes the following generic “ontology design
rule” (ODR). A first general formulation of this generic ODR is: in a given KB, for each
pair of objects of a given set chosen by the user of this ODR, there should be either
statements connecting these objects by relations of particular given types or statements
negating such relations, i.e. expressing that these relations do not or cannot occur in the
given  KB.  A negated  relation can be  expressed directly  via  a  negated statement  or
indirectly, e.g. via a disjointWith relation that forbids the existence of such a relation. 

In  its  more  precise  version  given  in  the  next  page,  we  call  this  ODR  the
“comparability via particular relation types” ODR, or simply the “comparability ODR”.
We call it an ODR, not a pattern nor a KB evaluation criteria/measure because this is
something in between. As above explained, it is always automatically checkable. It is
also reusable for evaluating a KB for example by applying it to all its objects and
dividing the number of successful cases by the number of objects. An example of KB
evaluation criteria that can be generalized by a reuse of this ODR is the “schema-based
coverage” criteria of [1] which measures the percentage of objects using the relations
that they should or could use according to schemas or relation signatures. Examples of
methodologies, best practices or ontology patterns that can be generalized via the use of
this ODR are those advocating the use of tree structures or of genus & differentia when
organizing or defining types. (Section 2.3 and Section 3.3 detail this last point.) 

Before formulating this ODR more precisely, it seems interesting to further detail its
application to the OWL properties subClassOf or equivalentClass – along with those
that  negate  or  exclude  them,  e.g.  disjointWith  and  complementOf.  Using  all  these
properties whenever relevant, as this applied ODR encourages, will for example lead the
authors of a KB to organize the direct subtypes of each class – or at least each top-level
class – into “complete sets of exclusive subtypes” (each of such sets being a subclass
partition, or in other words, a disjoint union of subtypes equivalent to the subtyped
class), and/or “incomplete sets of exclusive subtypes”,  and/or “(in-)complete sets of
subtypes  that  are  not  exclusive  but  still  different  and  not  relatable  by  subClassOf

https://docplayer.net/40848695-D2-1-conceptual-model-and-best-practices-for-high-quality-metadata-publishing.html
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relations”, etc. The more systematic the organization, the more a test of whether a class
is  subClassOf_or_equivalent (i.e. is subClassOf, equivalentClass or sameAs) another
class will lead to a true/false result, not an “unknown” result. In other words, the more
such a test will lead to a true/false result without the use of “negation as failure” (e.g. via
the “closed-world assumption”: any statement not represented in the KB is considered
to be false) or the use of the “unique name assumption” (with which different identifiers
are supposed to refer  to different things).  Since most inferences are based on such
subClassOf_or_equivalent tests, the more systematic the organization, the more inferences
will be possible without having to use negation as failure. This is interesting since using
negation as failure implies making an assumption about the content of a KB whereas
adding subClassOf or disjointWith relations means adding information to a KB.

The next two sections illustrate some of the many advantages of the more systematic
organization resulting from the application of this ODR: for inferencing or querying, for
avoiding what could have otherwise been implicit redundancies or inconsistencies and,
more generally, for improving the completeness, consistency and precision of a KB.
These advantages are not restricted to subClassOf_or_equivalent relations. They apply
to  all  specializationOf_or_equivalent relations,  i.e.  specializationOf  relations  (they
generalize subClassOf relations), equivalence relations or sameAs relations. As we shall
see,  most  of  these  advantages  also  apply  to  other  transitive  relations  such  as
partOf_or_equivalent (i.e. isSubPartOf, equivalentClass or sameAs). We call “speciali-
zation of an object” any other object that represents or refers to more information on the
same referred object. This covers all subtype relations but also specialization relations
between individuals, e.g. between the statements “some cars are red” and “John's car is
dark red”. We call “statement” a relation or a set of connected relations. 

We  adopt  the  following  “comparability”  related  definitions.  Two  objects  are
“comparable via a relation of a particular type” (or, more concisely, “comparable via a
particular relation type”) if they are either identical (sameAs), equivalent (by intension,
not extension) or connected by a relation of this type. Two objects are “uncomparable
via a relation of a particular relation type” (or, more concisely, “uncomparable via a
particular property”) if they are different and if some statement in the KB forbids a
relation  of  this  type  between  these  two  objects.  Given  these  definitions,  the
comparability ODR can be defined as testing whether “each object (in the KB or a part
of  the  KB selected  by  the  user  of  this  ODR)  is  defined  as  either  comparable  or
uncomparable to each other object (or at least some object, if the user prefers) via each
of the tested relation types”. In a nutshell, the comparability ODR checks that between
particular selected objects there is “either a comparability or an uncomparability via
particular relations”. This ODR does not rely on particular kinds of KBs or inference
engines but powerful engines may be relevant for checks if they infer more relations.

Stronger versions of this ODR can be used. E.g., for a more organized KB, some
users may wish to have “either comparability or strong uncomparability” via relations
of particular types between any two objects. Two objects are “strongly uncomparable
via a relation of a particular type” if they are different and if some statement in the KB
forbids  the existence of  a  relation of  this type between the two objects  as well  as
between their specializations. E.g., disjoint classes are strongly uncomparable since they
cannot have shared instances or shared subclasses (except for owl:Nothing). 

A more general version of this ODR could also be defined by using “equivalence by
intension or extension” instead of simply “equivalence by intension”. In this article,
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“equivalence”  means  “equivalence  by  intension”  and  “specialization”  is  also
“specialization  by  intension”.  This  article  also  assumes  that  the  equivalence  or
specialization relations (or their negations) which are automatically detectable by the
used inference engine are made explicit by KB authors and thus can be exploited via
SPARQL queries. In a description logics based KB, this can be achieved by performing
type classification and individual categorization before checking the ODR.

Figure  1 shows a  simple graphic user  interface  for  selecting various  options or
variants for this ODR. With the shown selected items (cf. the blue items in Figure 1 and
the words in italics in the rest of this sentence), this interface generates a function call or
query to check that each object (in the  default KB) which is instance of  owl:Thing is
either  comparable or uncomparable via  specialization relations and  part relations to
each other object in the default KB. Figure 1 shows a function call. After the conversion
of its last three parameters into more formal types, a similar call can be made to a
generic function. [8] is an extended version and on-line companion article for this one.
In its appendix, [8] defines this generic function and the types it exploits. To achieve
this, these definitions are written in a higher-order logic based language. 

With the  comparability_or_uncomparability option (hence with the  comparability
ODR), equivalence or sameAs relations are always exploited in addition to the specified
relations. When it is not relevant to also exploit equivalence or sameAs relations, the
connectability_or_un-connectability option shown in Figure 1 should be selected.

The next two sections show the interests of this ODR for, respectively, i) subtype
relations, and ii) other relations, e.g. part relations and specialization relations with
genus & differentia. When relevant, these sections present type definitions in OWL,
as well as SPARQL queries or update operations, to illustrate how this ODR can be
implemented.  Figure 1 shows that  SHACL (a constraint  language proposed by the
W3C)  may also  be  exploited  when its  expressiveness  is  sufficient  to  express  the
constraint that needs to be represented. However, this exploitation is not described in
this article. Section 4 provides more comparisons with other works and concludes.

Fig. 1. A simple interface for object comparability/connectability evaluation
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2 Comparability of Types Via Subtype Relations

2.1 Representation Via OWL
In this document, OWL refers to OWL-2 (OWL-2 DL or OWL-2 Full) [9] and OWL
entities are prefixed by “owl:”.  All  the types that  we propose in this article are in
http://www.webkb.org/kb/it/o_knowledge/d_odr_content/sub/ and  the  “sub”
namespace is here used to abbreviate this URL. Unless otherwise specified, the syntax
used for defining these types is  Turtle,  and the syntax used for defining queries or
update  operations is  SPARQL. SPARQL uses  Turtle  for  representing  relations.  For
clarity  purposes,  identifiers  for  relation  types  have  a  lowercase  initial  while  other
identifiers have an uppercase initial. 

To illustrate the interest of representing exclusion relations between classes – and,
more  generally,  of  the  interest  of  making  types  “uncomparable  via  subClassOf
relations”  whenever  possible – here  is  an  example  in  two parts.  The first  part  is
composed  of  the  following  RDF+OWL/Turtle  statements.  They  do  represent  any
exclusion relation. They represent a few relations from WordNet 1.3 (not the current
one, WordNet 3.1). According to these relations, Waterloo is both a battle and a town,
any battle is a (military) action, any town is a district, and any district is a location. 
  wn:Waterloo rdf:type wn:Battle, wn:Town.
  wn:Battle rdfs:subClassOf wn:Military_action. 
                            wn:Military_action rdfs:subClassOf wn:Action.
  wn:Town rdfs:subClassOf wn:District.
                          wn:District rdfs:subClassOf wn:Location.

Now, as a second part of the example, a disjointWith relation is added between two
top-level classes: the one for actions and the one for locations. This exclusion relation
between actions and locations has not been made explicit in WordNet but is at least
compatible with the informal definitions associated to categories in WordNet.  Given
all  these relations,  an  OWL inference  engine (that  handles  disjointWith relations)
detects that the categorization of Waterloo as both a battle and a town is inconsistent.
As  illustrated  in  Section 2.3,  many other  possible  problems  in  WordNet 1.3  were
similarly detected. Most of them do not exist anymore in the current WordNet.

wn:Action owl:disjointWith wn:Location.

OWL DL is sufficient for representing statements implying that particular classes
are  “comparable  via  subClassOf  (relations)”  or  “strongly  uncomparable  via
subClassOf”.  For  this  second  case,  which  amounts  to  state  that  two  classes  are
disjoint,  the  properties  owl:AllDisjointClasses,  owl:complementOf,
owl:disjointWith and  owl:disjointUnionOf can  be  used.  OWL  Full  [9]  is
necessary for  setting  owl:differentFrom relations  between classes,  and hence,  as
shown  in  the  next  page,  for  defining  the  property
sub:different_and_not_subClassOf as  a  sub-property  of  owl:differentFrom.  In
turn, this property is necessary for representing statements implying that particular
classes are  weakly uncomparable, i.e. uncomparable but not strongly uncomparable
(hence not disjointWith nor complementOf). OWL Full is also necessary for defining
the  properties  sub:different_and_not_equivalentClass and  sub:proper-
subClassOf (alias, sub:subClassOf_and_not-equivalentClass). With all the above
cited types, it is possible for KB authors to express any relationship of “comparability
or uncomparability via subClassOf”. 

http://www.w3.org/TR/turtle/
https://www.w3.org/TR/owl2-primer/
file:///home/phmartin/public_html/WebKB2/kb/it/o_knowledge/d_odr_content_article.html#ComparSubtypesViaOWL
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OWL inference  engines  generally  cannot  exploit  OWL Full  and  hence  do  not
enforce nor exploit the semantics of definitions requiring OWL Full. When inference
engines do not accept OWL Full definitions, the above cited “sub:” properties have to
be solely declared (as being properties) instead of being defined via relations (hence
by a logic formula). However, when inference engines do not accept or do not exploit
OWL Full definitions, the loss of inferencing possibilities due to the non-exploitation
of the above cited “sub:” properties is often small. When the goal is simply to detect
whether the comparability ODR is followed, if the SPARQL query proposed in the
next subsection is used to achieve that goal, it does not matter whether the above cited
“sub:” properties are declared or defined.

Making every pair of classes in a KB comparable or uncomparable via subClassOf is
cumbersome without the use of properties that create (in-)complete sets of (exclusive)
subclasses.  We propose  such  properties,  e.g.  sub:complete_set_of_uncomparable-
subClasses,  sub:incomplete_set_of_uncomparable-subClasses  and  sub:proper-
superClassOf_uncomparable_with_its_siblings. Such complex properties cannot be
defined in OWL. However,  as illustrated below, SPARQL update operations can be
written to replace the use of these complex properties by the use of simpler properties
that OWL inference engines can exploit.

sub:proper-subClassOf  rdfs:subPropertyOf  rdfs:subClassOf;
  owl:propertyDisjointWith owl:equivalentClass .
#a "proper subClass" is a "strict subClass" (a direct or indirect one)

sub:proper-subPropertyOf  rdfs:subPropertyOf  rdfs:subPropertyOf;
  owl:propertyDisjointWith owl:equivalentProperty .

sub:different_and_not_subClassOf  rdfs:subPropertyOf  owl:differentFrom;
  owl:propertyDisjointWith  rdfs:subClassOf . 

sub:different_and_not_equivalentClass rdfs:subPropertyOf owl:differentFrom;
  owl:propertyDisjointWith  owl:equivalentClass . 

sub:proper-superClassOf  owl:inverseOf  sub:proper-subClassOf .
sub:proper-superClassOf_uncomparable_with_its_siblings  
  rdfs:subPropertyOf  sub:proper-superClassOf .  #partial definition only

#Example of a SPARQL update operation to replace the use of
# sub:proper-superClassOf_uncomparable_with_its_siblings relations 
# by simpler relations:
DELETE 
{ ?c sub:proper-superClassOf_uncomparable_with_its_siblings ?sc1, ?sc2 }
INSERT { ?c sub:proper-superClassOf ?sc1, ?sc2 . 
         ?sc1 sub:different_and_not_subClassOf ?sc2 .
         ?sc2 sub:different_and_not_subClassOf ?sc1 } 
WHERE{?c sub:proper-superClassOf_uncomparable_with_its_siblings ?sc1, ?sc2
      FILTER (?sc1 != ?sc2) }

Similarly,  to  state  that  particular  properties  are  (strongly  or  at  least  weakly)
“uncomparable via rdfs:subPropertyOf relations”, OWL DL is sufficient. For strong
uncomparability,  owl:propertyDisjointWith relations  can  be  used.  Defining  that
particular  properties  are  only  weakly  uncomparable,  i.e.  uncomparable  but  not
strongly uncomparable, is possible in OWL Full, exactly as for subClassOf relations:
to define these properties, it  is sufficient to replace every occurence of “class” by
“property” in the above code. As for classes too, if these “sub:” properties are only
declared instead of being defined, the loss of inferencing possibilities is small. 
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2.2 Checking Via SPARQL
Using  SPARQL (1.1) [10]  to  check  the  “comparability  of  classes  via  subClassOf
relations” means finding each class that does not follow this ODR, i.e. that each class
that is  neither comparable  nor uncomparable via subClassOf relations to  each/some
other class in selected KBs (“each/some” depending on what the user wishes to test). 

The next page shows a SPARQL query for the “each other class” choice, followed
by a SPARQL query for the “some other class” choice. In any case, if instead of the
“comparability_or_uncomparability” option (the default option selected in Figure 1),
the user prefers the “comparability_or_strong-uncomparability” option, the two lines
about  sub:different_and_not_subClassOf relations  should  be  removed.  For  the
“connectability_or_un-connectability”  option,  the  line  about  owl:equivalentClass
and owl:sameAs relations should instead be removed. 

SELECT distinct ?c1 ?c2 WHERE   #query for the "each other class" choice
{ ?c1 a owl:Class.  ?c2 a owl:Class. FILTER(?c1 != ?c2)

  #skip comparable objects (here, classes comparable to ?c1):
  FILTER NOT EXISTS{ ?c1 rdfs:subClassOf|^rdfs:subClassOf ?c2 } 
  FILTER NOT EXISTS{ ?c1 owl:equivalentClass|owl:sameAs ?c2 }

  #skip strongly uncomparable objects: 
  FILTER NOT EXISTS{ ?c1 owl:complementOf|owl:disjointWith ?c2 } 
  FILTER NOT EXISTS{ [] rdf:type owl:AllDisjointClasses;
                        owl:members/rdf:rest*/rdf:first ?c1,?c2 }
  FILTER NOT EXISTS{ [] owl:disjointUnionOf/rdf:rest*/rdf:first ?c1,?c2 }

  #skip remaining uncomparable objects that are only weakly uncomparable:
  FILTER NOT EXISTS { ?c1 owl:differentFrom ?c2 }
} #no need to use sub:different_and_not_subClassOf here since, at this
  #  point, subClassOf relations have already been filtered out

SELECT distinct ?c1 WHERE    #query for the "some other class" choice 
{ ?c1 a owl:Class.  #for each class ?c1 

  #skip comparable objects (here, classes comparable to ?c1):
  FILTER NOT EXISTS{?c1 rdfs:subClassOf|owl:equivalentClass|owl:sameAs ?c2
                    FILTER ((?c1!=?c2) && (?c2!=owl:Nothing)) }

  #skip strongly uncomparable objects: 
  FILTER NOT EXISTS{ ?c1 owl:complementOf|owl:disjointWith ?c2 
                         FILTER ((?c1!=?c2) && (?c2!=owl:Nothing)) }
  FILTER NOT EXISTS{ [] rdf:type owl:AllDisjointClasses;
                        owl:members/rdf:rest*/rdf:first ?c1,?c2 }
  FILTER NOT EXISTS{ [] owl:disjointUnionOf/rdf:rest*/rdf:first ?c1,?c2 }

  #skip remaining uncomparable objects that are only weakly uncomparable:
  FILTER NOT EXISTS { ?c1 owl:differentFrom ?c2 }
}

Checking the “comparability of properties via subPropertyOf relations” is similar to
checking the “comparability of classes via subClassOf relations”. The above SPARQL
query can easily be adapted. The first adaptation to make is to replace every occurence
of “class” by “property”, to replace “disjointWith” by “propertyDisjointWith” and to
replace “complementOf” by “inverseOf”. The second adaptation to make is to remove
the lines about “AllDisjointClasses” and “disjointUnionOf” since in OWL these types
do not apply to properties and have no counterpart for properties. 

https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
file:///home/phmartin/public_html/WebKB2/kb/it/o_knowledge/d_odr_content_article.html#CheckComparSubtypesViaSPARQL
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Dealing with several datasets. A KB may reuse objects defined in other KBs; object
identifiers may be URIs which refer to KBs where more definitions on these objects can
be found. We abbreviate this by saying that these other KBs or definitions are reachable
from the original KB. Similarly, from this other KB, yet other KBs can be reached. One
feature proposed in Figure 1 is to check all objects “in the KB and those reachable from
the KB”. Since comparability checking supports the detection of particular inconsistencies
and redundancies (cf. next subsection and next section), the above cited feature leads to
the checking that a KB does not have particular inconsistencies or redundancies with the
KBs reachable from it. This feature does not imply fully checking these other KBs. The
above presented SPARQL query does not support this feature since it checks classes in
the dataset of a single SPARQL endpoint. Implementing this feature via SPARQL while
still benefiting from OWL inferences unfortunately requires the SPARQL engine and
the exploited OWL inference engine to work on a merge of all datasets reachable from
the originally queried dataset. For small datasets, one way to achieve this could be to
perform such a merge beforehand via SPARQL insert operations. However, when it is
not problematic to give up OWL inferences based on knowledge from other datasets, an
alternative  is  to  use  a  SPARQL query  where  i) “SPARQL services”  are  used  for
accessing objects in other datasets, and ii) transitive properties such as rdfs:subClassOf
are replaced by property path expressions such as “rdfs:subClassOf+”.

2.3 Advantages For Reducing Implicit Redundancies, Detecting 
Inconsistencies and Increasing Knowledge Querying Possibilities

Within or across KBs, hierarchies of types (classes or properties) may be  at least
partially redundant, i.e. they could be at least partially derived from one another if
particular type definitions or transformation rules were given. Implicitly redundant
type  hierarchies,  i.e.  non-automatically  detectable  redundancies  between  type
hierarchies, are reduced and easier to merge (manually or automatically) when types
are  related  by  subtypeOf_or_equivalent relations,  e.g.  subClassOf,  subPropertyOf,
equivalentClass or equivalentProperty relations. Using such relations is also a cheap
and efficient way of specifying the semantics of types. 

Relating  types  by  not_subtypeOf-or-equivalent relations  – e.g.  disjointWith  or
complementOf relations – permits the detection or prevention of incorrect uses of such
relations and of instanceOf relations. These incorrect uses are generally due to someone
not knowing some particular semantics  of a type,  because this someone forgot  this
semantics or because this semantics was never made explicit. The two-point list below
gives  some examples extracted from [11]. In this article, the author – who is also the
first author of the present article – reports on the way he converted the noun related part
of WordNet 1.3 into an ontology. Unlike for other such conversions, the goal was to
avoid modifying the meanings the conceptual categories of WordNet as specified by
their associated informal definitions and informal terms. The author reports that, after
adding disjointWith relations between top-level conceptual categories which according
to  their  informal  definitions  seemed  exclusive,  his  tool  automatically  detected  230
violations of these exclusions by lower-level categories. In the case of WordNet, what
these violations mean is debatable since it is not an ontology. However, like all such
violations,  they  can  at  least  be  seen  as  heuristics  for  bringing  more  precision  and
structure when building a KB. The authors of WordNet 1.3 were sent the list of the 230
detected possible problems. Most of these possible problems do not occur anymore in
the current WordNet (3.1). 

http://multiwordnet.fbk.eu/english/home.php
file:///home/phmartin/public_html/WebKB2/kb/it/o_knowledge/d_odr_content_article.html#ViaSubtypes_ForRedundanciesAndInconsistencies
file:///home/phmartin/public_html/WebKB2/kb/it/o_knowledge/d_odr_content_article.html#ViaSubtypes_ForRedundanciesAndInconsistencies
file:///home/phmartin/public_html/WebKB2/kb/it/o_knowledge/d_odr_content_article.html#ViaSubtypes_ForRedundanciesAndInconsistencies
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 Many  of  the  230  possible  problems  were  detected  via  the  added  exclusion
relations between the top-level category for actions and other top-level categories
which seemed exclusive with it, based on their names, their informal definitions
and those of their specializations.  Via the expression “informal definition” we
refer to the description in natural language that each WordNet category has. Via
the expression “categorized as” we refer to the generalization relations that an
object has in WordNet. The above mentioned added exclusion relations led to the
discovery  of  categories  –  e.g.  those  for  some  of  the  meanings  of  the  words
“epilogue”  and  “interpretation”  –  which  were  i)  categorized  and  informally
defined as action results/attributes/descriptions, ii) seemingly exclusive with actions
(given how they were informally defined and given they were not also informally
defined as actions), and iii) (rather surprisingly) also categorized as actions. Given
these  last  three  points,  [11]  removed  the  “categorization  as  action” of  these
action result/attribute/description categories. Based on the content of WordNet 3.1,
it appears that the authors of WordNet then also made this removal.

 Other  causes  for  the  230  violations  detected  via  the  added  exclusion  relations
between top-level categories came from the fact that WordNet uses generalization
relations between  categories  instead  of  other  relations.  E.g.,  instead  of
location/place  relations:  in  WordNet 1.3,  many categories  informally defined  as
battles were classified as both battles and cities/regions (this is no more the case in
WordNet 3.1). E.g., instead of member relations: in WordNet, the classification of
species is often intertwined with the classification of genus of species. 

Several  research  works  in  knowledge  acquisition,  model-driven  engineering  or
ontology engineering, e.g.  [12–15],  have advocated the use of  tree structures  when
designing  a  subtype  hierarchy,  hence  the  use  of  i) single  inheritance  only,  and
ii) multiple tree structures, e.g. one per view or viewpoint. They argue that each object of
the KB has a unique place in such trees and thus that such trees can be used as decision
trees or ways to avoid redundancies, normalize KBs and ease KB searching/handling.
This is true but the same advantages can be obtained by creating subtypes solely via sets
of  disjoint  (direct)  subtypes.  Indeed,  to  keep  these  advantages,  it  is  sufficient  (and
necessary) that whenever two types are disjoint, this disjointness is specified. With tree
structures,  there  are  no  explicit  disjointWith  relations  but  the  disjointness  is  still
(implicitly) specified. Compared to the use of multiple tree structures, the use of disjoint
subtypes  and  multiple  inheritance  has  the  advantages  of  i) not  requiring  a  special
inference engine to handle “tree structures with bridges between them” (e.g. those of
[12,  16])  instead  of  a  classic  ontology,  and  ii) generally  requiring  less  work  for
knowledge providers than creating and managing many tree structures  with bridges
between them. Furthermore, when subtype partitions can be used, the completeness of
these sets supports additional inferences for checking or reasoning purposes. The above
rationale do not imply that views or tree structures are not interesting, they only imply
that sets of disjoint subtypes are good alternatives when they can be used instead. 

Methods or patterns to fix (particular kinds of) detected conflicts are not within the
scope  of  this  article.  Such  methods  are  for  example  studied  in  the  belief  set/base
revision/contraction as well as in KB debugging. [17] proposes an adaptation of base
revision/debugging  for  OWL-like  KBs.  The  authors  of  [18]  have  created  ontology
design patterns that propose systematic ways to resolve fix some particular kinds of
inconsistencies, especially the violation of exclusion relations.
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As illustrated in Section 2.1, the OWL properties usable to express that some types
are “comparable or uncomparable via subtypeOf” – e.g. subClassOf, subPropertyOf,
equivalentClass, equivalentProperty, disjointWith and complementOf relations – can be
combined  to  define  or  declare  properties  for  creating  (un-)complete  sets  of
(non-)disjoint  subtypes or, more generally, for creating more precise relations which
better  support  the  detection  of  inconsistencies  or  redundancies.  E.g.,  sub:proper-
subClassOf can be defined and used to prevent unintended subClassOf cycles. 

Advantages For Knowledge Querying. Alone, subtypeOf_or_equivalent relations
only support the search for specializations (or generalizations) of a query statement,
i.e. the search for objects comparable (via subtype relations) to the query parameter.
The search for objects “not uncomparable via specialization” to the query parameter
– i.e. objects that are or could be specializations or generalizations of this parameter –
is more general and sometimes useful.
 Assume that a KB user is searching for lodging descriptions in a KB where sports

halls are not categorized as lodgings but are not exclusive with them either, based
on the fact that they are not regular lodgings but that they can be used as such
when natural disasters occurs. Also assume that the user intuitively shares such
views on lodgings and sports halls. Then, querying the KB for (specializations of)
“lodgings” will not retrieve sports halls. On the other hand, querying for objects
not uncomparable to “lodgings” will return sports halls; furthermore, if lodgings
have been defined as covered areas, such a query will not return uncovered areas
such as open stadiums. Thus, assuming that the term "lodging" in this previous
querying has been used because the author of the query was looking for covered
areas only, this person will only get potentially relevant results.

 More generally, when a person does not know which exact type to use in a query
or does not know what kind of query to use – e.g. a query for the specializations
or  the  generalizations  of  the  query  parameter –  a  query  for  objects  “not
uncomparable” to the query parameter may well collect all and only the objects
the person is interested in, if in the KB all or most types are either comparable or
uncomparable via subtype relations. 

The more systematically the types of a KB are comparable via subtype relations,
the more the statements of the KB – as well as other if they have a definition – will be
retrievable via comparability or uncomparability based queries.

3 Other Interesting Cases of Comparability

The previous section was about the comparability of types via subtype relations.  This
subsection generalizes the approach to other types of relations.

3.1 Comparability Via “Definition Element” Relations
In this article, an object definition is a logic formula that all specializations of the object
must  satisfy.  A full  definition  specifies  necessary  and  sufficient  conditions  that  the
specializations must satisfy. In OWL, a full definition of a class is made by relating this
class  to  a  class  expression  via  an  owl:equivalentClass relation.  Specifying  only
necessary conditions – e.g. using rdfs:subClassOf instead of owl:equivalentClass –
means  making only a  partial  definition.  An “element  of  a  definition”  is  any  target

file:///home/phmartin/public_html/WebKB2/kb/it/o_knowledge/d_odr_content_article.html#ViaDefinitionPart
file:///home/phmartin/public_html/WebKB2/kb/it/o_knowledge/d_odr_content_article.html#ViaSubindiv
file:///home/phmartin/public_html/WebKB2/kb/it/o_knowledge/d_odr_content_article.html#ViaOtherRels
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domain  object  which  is  member  of  that  definition,  except  for  objects  of  the  used
language (e.g. quantifiers and logical operators). A “definition element” relation is one
that connects the defined object to an element of the definition. E.g., if a  Triangle is
defined  as  a  “Polygon  that  has  as  part  3  Edges  and  3  Vertices”,  Triangle has  as
definition elements the types Polygon, Edge, Vertex and part as well as the value 3. The
property sub:definition_element – one of the types that we propose – is the type of
all “definition element” relations that can occur with OWL-based definitions. We have
fully defined sub:definition_element in [8] based on the various ways definitions can
be made in OWL; one of its subtypes is rdfs:subClassOf. This subsection generalizes
Section 2 since a definition may specify other relations than subClassOf relations, as
illustrated by the above definition of Triangle. A “definition-element exclusion” relation
is one that connects an object O to another one that could not be used for defining O.
This property can be defined based on the “definition element” relation type. E.g.: 
       sub:definition-element_exclusion   #reminder: "has_" is implicit
         rdfs:subPropertyOf  owl:differentFrom ; 
         owl:propertyDisjointWith  sub:definition_element ;
         owl:propertyDisjointWith [owl:inverseOf sub:definition_element].

As explained in Section 2.3, checking that types in a KB are either comparable or
uncomparable  via  subtype  relations  reduce implicit  redundancies  between  type
hierarchies. As illustrated by the later paragraph titled “Example of implicit potential
redundancies”,  this  checking  is  not  sufficient  for  finding  every implicit  potential
redundancy resulting from a lack of definition, hence  for finding every  specialization
hierarchy that could be derived from another one in the KB if particular definitions were
given. However, this new goal can be achieved by generalizing the previous approach
since this goal implies that for every pair of objects (in the KB or a selected KB subset),
either one of these objects is defined using the other or none can be defined using the
other. In other words, this goal means checking that for every pair of objects  in the
selected set, these two objects are  either comparable or uncomparable via “definition
element” relations. To express that objects are strongly uncomparable in this way – and
hence not potentially redundant – “definition-element exclusion” relations can be used.

The above cited new goal implies that, from every object, every other object in the
KB is made comparable or uncomparable via “definition element” relations. This is
an enormous job for a KB author and very few current KBs would satisfy this ODR.
However,  given  particular  reasons  and  techniques  described  in  [8],  a  KB
contributor/evaluator may choose to assume that for avoiding a good enough amount
of implicit potential redundancies between type hierarchies, it is sufficient to check
that from every object,  at least one other object in the KB is made comparable or
uncomparable via “definition element” relations (thus, using the “some other object”
option given in Figure 1, instead of the “every other object” option). As explained in
[8], this saves a lot of work to the KB contributors and may avoid generating a large
number of  “definition-element exclusion” relations.

Example  of  implicit  potential  redundancies. It is  often  tempting  to  specialize
particular types of processes or types of physical entities according to particular types of
attributes, without explicitly declaring these types of attributes and organizing them by
specialization relations.  E.g.,  at  first  thought,  it  may sound reasonable  to  declare a
process type Fair_process without relating it to an attribute type Fairness (or Fair) via a
definition such as “any Fair_process has as attribute a Fairness”. However, Fair_process
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may  then  be  specialized  by  types  such  as  Fair_process_for_utilitarianism,
Fair_process_wrt_Pareto-efficiency,  Fair_bargaining,  Fair_distribution,
Fair_distribution_wrt_utilitarianism,  Fair_distribution_for_prioritarianism,
Fair_distribution_wrt_Pareto-efficiency,  etc.  It  soon  becomes  apparent  that  this
approach is not relevant since i) every process type can be specialized wrt. a particular
attribute  type  or  any  combination  of  particular  attribute  types,  and  ii) similar
specializations can  also be made for function types (e.g. starting from Fair_function)
and attribute types (starting from Fairness). Even if the KB is not a large KB shared by
many persons, many beginnings of such parallel categorizations may happen, without
them being related via definitions. Indeed, the above example with process types and
attribute relations to attributes types can be replicated with any type and any relation
type, e.g.  with process types and agent/object/instrument/time relation types or with
physical entity types and mass/color/age/place relation types.  

Ensuring that objects are either comparable or uncomparable via “definition element”
relations is a way to prevent such (beginnings of) implicitly potentially redundant type
hierarchies: all/most/many of them depending on the chosen option and assumption. As
with disjointWith relations, the most useful “definition-element exclusion” relations are
those between some top-level types. To normalize definitions in the KB, e.g. to ease
logical inferencing, a KB owner may also use “definition-element exclusion” relations
to  forbid  particular  kinds  of  definitions,  e.g.  forbid  processes  to  be  defined  wrt.
attributes or physical entities.  Each definition for a type T sets “definition element”
relations to  other types, and these relations also apply to the subtypes of T. A special
“definition element” relation type may also be used to reach not just the above cited
other types but their subtypes too. Otherwise, most types would need to be defined if
few “definition-element exclusion” relations are set between top-level types.

3.2 Comparability Via Other Transitive Relations, Especially Part Relations
Ensuring  that  objects  are  either  comparable  or  uncomparable  via  specialization
relations via specialization relations has many advantages which were illustrated in
Section 2.3 and Section 3.1. Similar advantages exist with all transitive relations, not
just specialization relations, although to a lesser extent since less inferences – and
hence less error detection – can be made with other transitive relations.  

Part properties – e.g. for spatial parts, temporal parts or sub-processes – are partial-
order properties  that  are  often  exploited.  Unlike  subtype  relations,  they  connect
individuals.  Nevertheless,  for  checking  the  “comparability  of  individuals  via  part
relations (let us assume sub:part relations)”, the SPARQL query given in Section 2.2
can be adapted. Below is this adapted query for the “each other object” choice. The
adaptation  to  make  for  the  “some other  object”  choice  is  similar  to  the  one  in
Section 2.2. Two objects that are “comparable via part relations” if one is fully part of
the other (or if they are identical). They are “strongly uncomparable via part relations” if
they do not share any part (and hence the respective parts of these two objects do not
have shared parts either). Two objects that are “weakly uncomparable via part relations”
share some parts but none is fully part of the other. 
SELECT distinct ?i1 ?i2 WHERE #individuals (as checked by the next 2 lines)
{ ?i1 rdf:type ?c1.  FILTER NOT EXISTS { ?i1 rdf:type owl:Class }
  ?i2 rdf:type ?c2.  FILTER NOT EXISTS { ?i2 rdf:type owl:Class }

  #skip comparable objects:
  FILTER NOT EXISTS { ?i1 owl:sameAs|sub:part+|(^sub:part)+ ?i2 }

file:///home/phmartin/public_html/WebKB2/kb/it/o_knowledge/d_odr_content_article.html#ViaPart
file:///home/phmartin/public_html/WebKB2/kb/it/o_knowledge/d_odr_content_article.html#ViaSubindiv
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  #skip strongly uncomparable objects:
  FILTER NOT EXISTS { ?i1 sub:part_exclusion ?i2 }

  #skip remaining uncomparable objects that are only weakly uncomparable:
  FILTER NOT EXISTS { ?i1 owl:differentFrom ?i2 } #as in Section 2.2 

} #with:    sub:part rdfs:subPropertyOf owl:differentFrom ;
  #                  rdf:type owl:TransitiveProperty .
  #         sub:part_exclusion  rdfs:subPropertyOf  owl:differentFrom ;
  #                             owl:propertyDisjointWith  sub:part .

3.3 Comparability Via Transitive Relations Plus Minimal Differentia
When defining a type, a good practice is to specify i) its similarities and differences with
each of its direct supertypes (e.g., as in the genus & differentia design pattern), and ii) its
similarities and differences with each of its siblings for these supertypes. This is an often
advocated best practice to improve the understandability of a type, as well as enabling
more inferences. E.g., this is the “Differential Semantics” methodology of [13]. Several
ODRs can be derived from this best practice, depending on how “difference” is defined.
In  this  article,  the  term “minimal-differentia”  refers  to  a  difference  of  at  least  one
(inferred or not) relation in the compared type definitions: one more relation, one less or
one with a  type or destination that  is  different (semantically,  not  just  syntactically).
Furthermore, to check that a class is different from each of its superclasses (i.e. to extend
the genus & differentia method), an rdfs:subClassOf relation between the two classes
does not count as “differing relation”. When relevant, this ODR can be generalized to
use other transitive relations between objects, e.g. partOf relations.

For the “comparability relation type”, Figure 1 proposes the option “comparability-
or-uncomparability_with-minimal-differentia”. For supporting this option when checking
“comparability via subClassOf relations” between any pair of classes in a KB, the code
of the SPARQL query of Section 2.2 can be adapted by adding some lines before the
filters  testing  whether  the  classes  are  comparable  or  uncomparable:  below,  see  the
FILTER block from the 3rd line to the “...”. This block checks that there is a “minimal-
differentia” between the tested classes. The retrieval of automatically inferred relations
relies on the use of a relevant entailment regime. 

SELECT distinct ?c1 ?c2 WHERE
{ ?c1 rdf:type owl:Class.   ?c2 rdf:type owl:Class.  FILTER (?c1 != ?c2)

  FILTER (!            #skip classes satisfying the following conditions:
   ( (EXISTS 
      { ?c1 ?p1 ?v1 .                #?c1 has at least one property
        FILTER(?p1!=rdfs:subClassOf) #        that is not rdfs:subClassOf
        FILTER                       #and
        ( NOT EXISTS { ?c2 ?p1 ?v2 } #   ?p1 is not in ?c2
          ||  EXISTS { ?c2 ?p1 ?v2   #or ?p1 ?v1 is not in ?c2
                       FILTER (?v1 != ?v2) }
          ||  EXISTS { ?c2 ?p2 ?v2   #or ?p2 ?v2 is not in ?c1
                       FILTER NOT EXISTS { ?c1 ?p2 ?v2 }  } )
      })

  || ((NOT EXISTS                 #or
       { ?c1 ?p1 ?v1              #  ?c1 has no property, except may be
         FILTER((?p1!=rdfs:subClassOf) #  an rdfs:subClassOf property
                && (?v1 != ?c2))}      #  to ?c2
      ) && EXISTS{?c2 ?p2 ?v2})   #  and ?c2 has (other) properties
 ))

  ... #same filtering for (un-)comparable objects as in Section 2.2
}

file:///home/phmartin/public_html/WebKB2/kb/it/o_knowledge/d_odr_content_article.html#WithMinimalDifferentia
file:///home/phmartin/public_html/WebKB2/kb/it/o_knowledge/d_odr_content_article.html#ViaPart
file:///home/phmartin/public_html/WebKB2/kb/it/o_knowledge/d_odr_content_article.html#ViaSubindiv
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4 Other Comparisons With Other Works and Conclusion

As previously illustrated,  the  “comparability  ODR” generalizes  – or  permits  one to
generalize – some best practices, ontology patterns or methodologies that advocate the
use  of  particular  relations  between  particular  objects,  and  supports  an  automated
checking of the compliance with these practices, patterns or methodologies. This leads
to the representation of knowledge that is more connected and precise, or with less
redundancies. Since the comparability ODR can be used for evaluating a KB – e.g. by
applying it to all its objects and dividing the number of successful cases by the number
of objects – it can also be used to create KB evaluation criteria/measures, typically for
measuring the (degree of) completeness of a KB, with respect to some criteria. 

As noted in [7],  a  survey on quality assessment for Linked Data,  completeness
commonly refers to a degree to which the “information required to satisfy some given
criteria or a given query” are present in the considered dataset. To complement this
very general definition, we distinguish two kinds of completeness.
 Constraint-based completeness measures the percentage of elements in a dataset

that  satisfy  explicit representations  of  what  – or  how –  information  must be
represented in the dataset. These representations are constraints such as integrity
constraints or,  more  generally,  constraints  expressed  by  database  schemas,
structured  document  schemas,  or  schemas  enforcing ontology design  patterns.
E.g.,  in  a  particular  dataset,  the  constraint  that  at  least  one  movie  must  be
associated to each movie actor, or the constraint that all relations must be binary. 

 Real-world-based completeness measures the degree to which particular kinds of
real-world  information  are  represented  in  the  dataset.  E.g.,  regarding  movies
associated to an actor, calculating this completeness may consist in dividing “the
number  of  movies  associated  to  this  actor  in  the dataset”  by  “the  number  of
movies  he  actually played  in,  i.e.  in  the  real  world”.  Either  the  missing
information are found in a  gold standard dataset or the degree is estimated via
completeness oracles [17], i.e. rules or queries estimating what is missing in the
dataset to answer a given query correctly. Tools such as SWIQA and Sieve help
perform measures for this kind of completeness.   

All the completeness criteria/measures collected by [7] – schema/property/popu-
lation/interlinking completeness – “assume that a gold standard dataset is available”.
Hence, they are all subkinds of real-world based completeness. However, constraint-
based  completeness  is  equally  interesting  and,  for  its  subkinds,  categories  named
schema/property/population/interlinking completeness could  also  be  used  or  have
been used [1, 4]. What the comparability ODR can be reused for to ease the measure
of completeness is about constraint-based completeness. As illustrated in this article,
checking such a completeness may lead the KB authors to represent information that
increase the KB precision and then enable the finding of yet-undetected  problems.
Increasing such a completeness does not mean increasing inferencing speed.

This  article  showed  how  SPARQL  queries  could  be  used  for  implementing
comparability ODRs. More generally, most  transformation languages or systems that
exploit  KRs  could  be  similarly  reused.  [18]  and  [19]  present  such  systems.  The
proposed SPARQL queries have been validated experimentally (using Corese [19], a tool
which includes an OWL-2 inference engine and a SPARQL engine). Unsurprisingly, in the
tested existing ontologies, many objects were not compliant with the ODRs. 

http://patterns.dataincubator.org/book/
https://docplayer.net/40848695-D2-1-conceptual-model-and-best-practices-for-high-quality-metadata-publishing.html
http://www.semantic-web-journal.net/system/files/swj773.pdf
http://sieve.wbsg.de/
http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1075&context=ecis2011
https://en.wikipedia.org/wiki/Data_integrity#Types_of_integrity_constraints
https://en.wikipedia.org/wiki/Data_integrity#Types_of_integrity_constraints
http://www.semantic-web-journal.net/system/files/swj773.pdf
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