
WWW Indexation and Document Navigation using
Conceptual Structures

Peter W. Eklund and Philippe Martin
School of Information Technology, Griffith University
Parklands Drive, Southport QLD 4215, AUSTRALIA

Email: p.eklund@gu.edu.au,
philippe.martin@gu.edu.au

Abstract — WebKB is a public domain knowledge annota-
tion toolkit allowing indices of any Document Element (DE)
on the WWW to be built using annotations in a Knowledge
Representation (KR) language: Conceptual Graphs. The
language permits the semantic content and relationships to
other DEs to be described precisely. Search can be initi-
ated remotely, via a WWW-browser and/or other software.
WebKB enables the document generation using inferences
within the knowledge engine to assemble DEs. Additionally,
the knowledge base provides an alternate index through
which both query and direct hyper-link navigation can oc-
cur. This paper describes some of the key features of the
toolkit and its approach to knowledge indexation.

I. INTRODUCTION
WebKB [13] is a public domain knowledge annotation toolkit
sharing many design principles with WWW-based public an-
notation tools, e.g. ComMentor [18] and HyperNews [9], and
WWW-based traders, e.g. AlephWeb [17], NetRepository [10]
and AI-trader [16]. Despite similarities, WebKB is intended to
index DEs using a knowledge representation language and ex-
ploits the annotation to achieve information retrieval outcomes.
This combination of document indexation with knowledge rep-
resentation languages is called knowledge indexation.

HyperNews, AlephWeb and AI-trader allow indices to be
created on entire documents only, WebKB allows indices on ar-
bitrary parts of documents. AI-trader uses Conceptual Graphs
[19] for indexing documents, while NetRepository uses Knowl-
edge Interchange Format (KIF) [3, 4] for communication be-
tween knowledge servers. None of these tools, except WebKB,
can generate documents as answers to user queries by assem-
bling DEs via an inference engine.

WebKB is an extension of previous knowledge annotation
efforts in a system called CGKAT [12]. Like CGKAT, We-
bKB allows indexing and retrieval over DE collections using a
knowledge mark up language (KR language) either embedded
in documents or stored in WWW-accessible databases. WebKB
represents a substantial rewrite of CGKAT as an open web-
accessible client/server architecture knowledge annotation sys-
tem exploiting Java and Javascript enabled web browsers and
incorporating two knowledge engines, CoGITo [6] and
Peirce [2].

This paper is structured in five sections. First, we introduce
the knowledge representation (KR) language used for indexing
and retrieving DEs. We show how this KR can be used to
reason about DE collections, how inference occurs, and how

we can use the KR as the basis for knowledge retrieval. Second,
we discuss the architecture of the toolkit. This architecture is
independent of the KR language and all components can be
inter-changed within the architecture. The issue of a shared
vocabulary for knowledge annotation is raised in Section IV. In
the last section, we provide a walk-through some of the system
features and functionality and demonstrate how WebKB can be
used to generate new documents through the assembly of DEs
indexed by knowledge representation.

II. KNOWLEDGE REPRESENTATION
WebKB uses a knowledge representation called Conceptual
Graphs [19] as an annotation language. Conceptual Graphs
(CGs) are labeled multi-graphs: concept nodes are connected
by relation nodes. Contexts can be introduced, for example to
provide nested negation, and co-referent links added to a graph
to express variables and their scope. In simple CGs, each node
label is composed of a type and a generic/individual referent.
A simple CG may be translated into an existential conjunctive
and positive formula of first order logic. Fig. 1 is an example
annotation of a source text “John is repairing his own car.” and
is in the CG linear form. In knowledge representation terms the
“meaning” of the CG can be interpreted as the first-order logic
formula as shown in Fig. 1.

[Repair]-
{->(Agent)->[Person: John];
->(Object)->[Car]->(Owner)->[Person:John];
}. �����������
	��

���������������������� �"!#�%$&�('�!)���+*,�����������

-/. ��!�01�����
$&�2'3!��4��5�687���9101���4�:�����;5�<=!&���������>$��('3!���?
Figure 1: A simple source text and its representation as a CG.

The vocabulary of concepts (like Person or Car) and re-
lations (such as Owner and Agent) derive from a pre-defined
ontology of types. An ontology refers to a dictionary of terms
that may be used as the vocabulary for knowledge modeling.
Such an ontology may be organized hierarchically.

The two sets of usable concept and relation types may be
ordered in a partial order (subsumption relation), implying a
specialization relation between CGs and in turn between DEs
the CGs index. For example, Fig. 2 is a specialization of the
graphs,

[Person:John]<-(Owner)<-[Car].

[Repair]-
{<-(Object)->[Car];
<-(Agent)->[Person:John];
}.

1



$(Indexation
(Context:
Language: CG;
Element_author:

Childrens book;
Domain: repairing things;

Repr_author:Peter;
Comment:Simple example;
Creation_date);

(DE: John is repairing his own car.)
(Repr: [Repairing]-
{->(Agent)->[Man: John];
->(Object)->[Vehicle]

<-(possession)->[Man: John];))$

Figure 2: An annotation contains information about the context
(repairing things), the source of the text (Children’s book), a
date-stamp and the name of the annotator (Peter).

$(Indexation
(Context: Language: CG;
Element_author: Peter.Eklund;
Repr_author:Peter.Eklund;
Creation_date: Mon Jun 01 22:13:29 1998;
) (DE: John is repairing his car.)
(Repr: [Repairing]-

{ ->(Agent)->[Man: John];
->(Object)->[Vehicle]->(Owner)->[Man: John];

}
)

)$

$(Indexation
(Context: Language: CG;
Element_author: Peter.Eklund; Domain:;
Repr_author:Peter.Eklund;
Creation_date: Mon Jun 01 22:18:54 1998;
)
(DE: Repairing involves a physical entity.)
(Repr:[Repairing]->(Object)

->[Physical_entity].))$

Figure 3: These two CGs (resp. the DEs they index) generalize
the CG (rep. the indexed DE) in Fig. 1. Thus, any of these CGs
may be used to retrieve the CG or the DE in Fig. 1.

More expressive CGs may be built using more labels in the
nodes, e.g. representing sets, context, and uncertainty but com-
plex CGs cannot be compared using the specialization relation
between simple CGs. Other matching or ordering relations
need to be defined. Fig. 3 is an example CG which may be
built to represent the sentence “John has not repaired any cars
today”. WebKB can store and retrieve simple CGs but also
contextualized (i.e. embedded) simple CGs: the query has to be
a simple CG but when a simple CG is retrieved, it is presented
with its contextualisation. For example, the CG in Fig. 4 would
be retrieved with any of the preceedings graphs.

Definitions and Joins with Conceptual Graphs
WebKB accepts type definitions with necessary and/or suffi-
cient or typical conditions. For example, the sentences “A car
mechanic is someone who often repairs cars” and “Repairing
a car is dirty work and involves a spanner and a jack” could
respectively be represented in Fig. 5.

(Not)<-[Proposition: p12
[Time:today]<-(PTIM)<-[Proposition: p13

[Repairing]-
{->(Agent)->[Man: John];
->(Object)->[Vehicle]; }] ].

Figure 4: An embedded CG representing the fact that “John is
not repairing a vehicle today”.

NSC for Car-mechanic (x) are
[Repairing]-
{ ->(Agent)->[Man:*x];

->(Object)->[Vehicle];
->(Frequency)->[Frequency: often];}.

TC for Repairing (x) is
[Repairing:*x]-
{ <-(Succ)<-[Situation]->(Descr)

->[Proposition: p13
(Not)<-[Proposition: p14 [Car:*c]

->(Attr)->[Functioning]];
->(Succ)->[Situation]->(Descr)
->[Proposition: p15

[Car:*c]->(Attr)->[Functionning]
[Person:*p]->(Attr)->[Dirty]];

->(Agent)->[Person:*p];
->(Object)->[Vehicle:*c];
->(Instrument)->[Spanner];
->(Instrument)->[Jack]; }.

Figure 5: Definition of the type Car-mechanic with Necessary
and Sufficient Conditions, Definition of the type Repairing with
typical conditions.

The graph-based structure of CGs recommends them for In-
formation Retrieval (IR) and data discovery. For example, when
a part of a CG specializes another CG, the two CGs can be
joined to form a derived CG specializing both. There are many
ways to define graph merging. For example, we define a max-
imal join as a join which “maximises” the number of matched
nodes and then select a derived CG with a “minimal” number
of concept and relation nodes. WebKB provide a command for
such a join. For example, from the CGs
[Person:John]<-(Owner)<-[Car] and
[Car]<-(Object)<-[Repair]->(Agent)->[Man:John],
our maximal join would produce the CG used in Fig. 2.

Figs. 6–9 show the process through which general CGs can
be restricted and joined to form the required sentence for the
Repair graph of Fig. 1. In Fig. 6, the concept type
Goal directed agent is specialized to Man. Likewise,
the concept type Process is specialized to Repairing and
UNIVERSAL to Vehicle. In Fig. 9, the three graphs are
joined on the Man and Vehicle concepts.

Figs. 6–9 show the process through which general CGs can
be restricted and joined to form the required sentence for the
Repair graph of Fig. 1. In Fig. 6, the concept type
Goal directed agent is specialized to Man. Likewise,

[Repairing]-
{->(Agent)->[Man: John];
->(Object)->[Vehicle]<-(Owner)

<-[Man: John];}.

Figure 6: An example of the maximal join of two conceptual
graphs referred to in the text.



Figure 7: Graphs are posted to a “sheet of assertion” directly
from the conceptual cannon.

Figure 8: The general concepts are restricted to the types Man,
Vehicle and Repairing.

the concept type Process is specialized to Repairing and
UNIVERSAL to Vehicle. In Fig. 9, the three graphs are
joined on the Man and Vehicle concepts.

Figure 9: Where concepts match, the graphs can be joined.
WebKB-GE [15] is a Java application that permits these graph-
ical operations on conceptual graphs. These screen shots derive
from WebKB-GE.

Given the open philosophy of WebKB, other knowledge rep-
resentation languages and correspondent inference systems can
be used, e.g. KIF [3, 4] or RDF (see
http://www.w3.org/RDF/). The first selectable menu of
WebKB allows the user to select the relevant knowledge en-
gine. Note that in the annotations of Figs. 2 and 3 that the KR
language is defined as “CG”. This is a flag to alert the inference
engine of the form of knowledge language.

Examples of Applications
Users of relational database query languages must understand
the database structure, i.e. the exact names of the tables and
their relations. The CG formalism can be used to exploit “search
by content”. For example, the specialization relation between
CGs allows them, and the DEs they index, to be retrieved by
specifying parts of their content with any supertype of the types
they use. Additionally, if the calculation of the specialization
relation takes into account type definitions, CGs may be re-
trieved even if their structure differs from the query structure
— provided there exists a specialization relation between the

query and the CGs when type definitions have been fully ex-
panded.

When a DE @ is composed of other DEs, some of which have
been represented by CGs, these CGs may be merged using a
maximal join to produce a default representation for the DE @ .
This technique is a key component of the method used by the
information retrieval system RIME [7]. This technique can be
used by the WebKB users for easing their representation of the
content of a document.

Knowledge retrieval and merging may also guide knowledge
modeling and DE indexation. As an example in the legal do-
main, CGs including concepts of types (or specializing types)
“Legally-separated” or “Bankrupt-parterships” could be auto-
matically retrieved and merged. The result may then serve
as a guide to define the concept type “bankrupt partnerships
between legally separated individuals”. The CGs specializing
this type definition could be automatically updated to use this
new type. If these CGs indexed DEs, these DEs are now also
accessible via queries using this new type.

When no results can be found for a query — there is no exact
match — queries could be generalized to provide approximate
results, e.g. by using only a part of the query or by using CGs
which are supertypes of the query. This technique is used in
ROCK [1] but not in WebKB.

III. ARCHITECTURE
An important element of our work is an open architecture. Sep-
arate, combinable and WWW-accessible tools permit ease of
use and exchange with other tools thought more interesting or
suitable: a simple URL change allows such a substitution pro-
viding the same protocol is followed by the substituting mod-
ule.

WebKB has three kinds of components: knowledge/text pro-
cessors, knowledge bases and interfaces. All the components
are WWW-accessible.

Knowledge/Text Processors
WebKB allows its users to search, build, manage or generate
knowledge or DEs via a language of commands. There are
three kinds of commands: (i) shell-like text processing com-
mands — such as cat, grep, awk and diff — but working on
WWW-accessible files; (ii) knowledge processing commands
(at present, only CG processing commands); and (iii) com-
mands of a simple shell-like scripting language — such as if,
for, set, pipe — for combining other commands.

In order to be processed, these commands must be sent to a
WebKB CGI server (e.g. from a Web browser via the HTML
forms of the WebKB interface or from another software by
using the CGI protocol
(URL: http://hoohoo.ncsa.uiuc.edu/cgi/)).
Commands (or scripts of commands) may be stored in files and
may be mixed with other DEs. To separate a sequence of com-
mands from the rest of the document, the sequence must be en-
closed either by the special HTML tag “<KR>” and “</KR>”,
or by the strings “$(” and “)$”.

Interfaces
Whenever possible, we have used HTML and Javascript to im-
plement the interfaces of our tools. Thus, users may customize



these interface and their behavior by modifying the HTML
sources. As opposed to CGI servers (servers using the Common
Gateway Interface), Javascript programs are directly executed
on client machines.

For the CG graphic editor (WebKB-GE [15]), where substan-
tial direct manipulation of graphics are required, Java has been
used.

The current interface tools of WebKB are the following: a
textual CG editor and a graphic CG editor; an ontology editor
for the edition of type definitions or relations between types
and/or individuals, and a hierarchy browser for such relations.

Knowledge bases and ontologies
Existing top-level ontologies, domain ontologies or even more
complete knowledge bases in a relevant domain can be reused
to guide knowledge modeling: they show what kind of infor-
mation might be modelled (and thus what kind of information
to collect in documents), and how to model it. They also spare
considerable design work.

WebKB provides a top-level ontology of about 200 concept
types and 200 relation types (some of the uppermost concept
types are shown in Fig. 10). This ontology was created by
merging other current top-level ontologies used in the knowl-
edge acquisition and knowledge representation literature and
cooperation-oriented hypertext tools. For example, the relation
type ontology collects thematic, mathematical, spatial, tempo-
ral, rhetoric and argumentative relations types.

Constraints associated to types in our top-level ontology help
to increase the consistency of knowledge representations. For
example, exclusion links between types ensures that exclusive
types such as Spatial-entity, Information-entity and
Process never have common subtypes. We have noticed from
experience that such a safeguard is extremely useful especially
because the subsumption relation is ill-employed, for example
when defining a part or a role of a kind of entity instead of a
more specialized kind, or because a user may misinterpret or
forget the category to which a type pertains, e.g. a type named
“union” by a user to refer to an organization could be inter-
preted by another user as refering to a process, a physical entity
resulting from a process, a state, and even a location; our top-
level ontology prevents such misinterpretations. The signatures
we have associated with our relation types also prevents similar
misinterpretations during an ontology extension but also during
the construction or use of CGs.

At present, user knowledge, including ontologies, can only
be stored in documents. When a warehouse is used, it will be
initialises with our top-level ontology, specialized by the
90,000 categories of the natural language ontology WordNet[14].
Thus knowledge modeling is eased since, in most domains and
applications, users will find a lot of relevant concept type to
specialize and a lot of relations signed on this vocabularies.
Knowledge sharing and reuse will also be eased since knowl-
edge from different users will derive from a common vocabu-
lary. Knowledge retrieval is enhanced because it will be pos-
sible to use a lot of natural language concept types (and use
different synonym names to refer to them) for accessing knowl-
edge. We will also allow this for retrieving knowledge stored in
documents but with far less precision since the types they use
are not related to the types in the warehouse (unless derived

Something
Something > Entity Situation
Entity > Description Physical_entity;
Physical_entity > Cat Mat Table Person;
Description > Hypothesis;
Situation > Process State;
Process > Believe;

Figure 10: Defining a simple ontology.

from our top-level ontology, in which case some good guess
can be made by exploiting the constraints on the signature rela-
tions). We have already exploited WordNet in such directions
in our previous tool, CGKAT[11].

V. EXAMPLES OF WEBKB
To experiment with WebKB the reader should visit
http://www.int.gu.edu.au/kvo/software

with a Javascript enabled web browser. Select “WebKB”. The
Tool to index DEs by knowledge representations provides a
form entry identifying the URL for the document, the specific
document element and its representation as a conceptual graph.

Fig. 2 shows an indexation of a sentence “John is repairing
his own car”. The WebKB Tool to index DEs by knowledge
representations provides a form entry for helping to build such
indexations. It asks for the URL of the indexed document, the
specific document element and its representation as a CG. Once
the form is complete, the user may ask for the generation of the
indexation in the WebKB language, which may then be saved
on the user local disk or copy/pasted in another document.

The textual or graphic CG editors ease the creation of CGs.
(Figs. 6–9 were created using WebKB-GE [15], the graphical
editor). The types used in the CGs may be retrieved and se-
lected via the hierarchy browser. Subsumption relations and
exclusion relation between types may also be specified using
the WebKB language (as in Fig. 10) or graphically via WebKB-
GE.

Having assembled all the elements required by WebKB to
perform knowledge retrieval, we now call Information
Retrieval/Handling tools from the main WebKB menu. A form-
based interface to the knowledge engine is then presented. An
example under Examples of queries and scripts is shown in
Fig 11. This example can be cut and paste into the query
field and submitted to the inference engine. Firstly, it loads the
knowledge annotated exInterviewIndexation.html. The
inference engine is asked to use this knowledge base in order to
answer the query “Tell me about all the specializations of tasks
that are subtasks of others?”, this is written
spec [Task]->(Subtask)->[Task]. A new Netscape win-
dow will appear with the query result. The result of the query
permits the user to navigate both the knowledge base, as knowl-
edge annotations, as well as the original documents from which
the annotations were derived.

Similar queries and outputs will result from submitting
spec [Vehicle] and
spec Something related to road accident. Note also
that options include both knowledge and source, or source, or
knowledge only. The example output is itself a document con-



load http://meganesia.eas.gu.edu.au/˜phmartin
/WebKBtools/exInterviewIndexation.html;

spec [Task]->(Subtask)->[Task];
spec [Vehicle];
spec Something_related_to_road_accident;

Figure 11: Loading an indexation file to test specialization.

taining both knowledge and the original source. It can be saved
and thus demonstrates how WebKB enables the construction of
documents using knowledge inference to assemble document
elements.

WebKB has a broad range of applications: precision-oriented
IR, Knowledge Acquisition (KA) and Computer Supported Co-
operative Work (CSCW). The two most important facilities for
KA and CSCW that WebKB is aimed is to provide knowledge-
based comparison and synthesis of information provided by
different authors, and user control of generated document con-
tent, form or sequence via document descriptions using HTML,
Javascript and conceptual queries.

VI. CONCLUSION
WebKB is an indexation tool representing a substantial invest-
ment in programming effort. Its motivations are as a public
domain research tool to experiment with knowledge retrieval
on the WWW. It is intended to combine various technologies
for helping Knowledge Acquisition, Information Retrieval and
CSCW, notably WWW-related technologies, databases and the
knowledge representation languages and processors.

Many of the ideas contained within WebKB maybe a precur-
sor to the functionality of the next generation of commercial-
grade web-based knowledge mark up and information retrieval
tools. Our motivation is to use this toolkit to improve pro-
ductivity in knowledge acquisition and knowledge indexing for
several specific projects of interest to the Australian Defence
Science Technology Organisation (DSTO). We are also moti-
vated by a demonstration that Conceptual Graphs as a knowl-
edge representation can be used for knowledge interchange and
annotation. This paper has shown how DEs can be indexed by
knowledge annotations as CGs and subsequently how inference
with CGs can be used to generate new documents via navigat-
ing the knowledge base of annotations.

References
[1] B. Carbonneill and O. Haemmerlé, ROCK : Un système de

Question/Réponse fondé sur le formalisme des Graphes Con-
ceptuels. In Actes du 9eme congrès Reconnaissance des Formes
et Intelligence Artificielle, pp. 159-169, Paris, January 1994.

[2] G. Ellis, Managing Complex Objects. PhD Thesis, The Uni-
versity of Queensland, Department of Computer Sciences, Aus-
tralia, 1995.

[3] M.R. Genesereth, Knowledge Interchange Format. Principles of
Knowledge Representation and Reasoning: Proceedings of the
2nd International Conference, Cambridge, MA, pp. 599-600.
Morgan Kaufmann, 1991.

[4] M.R. Genesereth and R.E. Fikes, Knowledge Interchange For-
mat, Version 3.0 Reference Manual. Technical Report Logic-92-
1, Computer Science, Stanford University, 1992.

[5] T.R. Gruber, The Role of Common Ontology in Achieving
Sharable, Reusable Knowledge Bases: in Principles of Knowl-

edge Representation and Reasoning: Proceedings of the 2nd In-
ternational Conference, Cambridge, MA, pp. 601-602, Morgan
Kaufmann, 1991.

[6] O. Haemmerlé, CoGITo: une plate-forme de développement de
logiciels sur les graphes conceptuels. PhD Thesis, Montpellier
II University, France

[7] A. Kheirbek and Y. Chiaramella, Integrating Hypermedia and
Information Retrieval with Conceptual Graphs: In Hypertext-
Information Retrieval-Multimedia (HIM’95), Konstanz, Ger-
many, April, pp. 47-60, 1995.

[8] Y. Chiaramella and A. Kheirbek, An Integrated model for Hyper-
media and Information Retrieval, in Information Retrieval and
Hypertext, M. Agosti and A. Smeaton (Ed), Kluwer Academic,
pp. 139-178, 1996.

[9] D. LaLiberté, Collaboration with HyperNews: In Proceedings
of Workshop on WWW and Collaboration, Cambridge, MA,
September 11-12, 1995.

[10] C. Luigi Di Pace, P. Leo and A. Maffione, NetRepository: A
Networked Information Repository which Supplies Ontologies
for Retrieving Information, in Conceptual Structures: Fulfilling
Peirce’s Dream, pp. 145-159, Springer Verlag, LNAI 1114,
1997, Berlin.

[11] P. Martin, Using the WordNet Concept Catalog and a Relation
Hierarchy for Knowledge Acquisition. Proceedings of Peirce’95,
4th International Workshop on Peirce, University of California,
Santa Cruz, August 18, 1995.

[12] P. Martin, Exploitation de graphes conceptuels et de documents
structurés et hypertextes pour l’acquisition de connaissances et
la recherche d’informations. PhD Thesis, University of Nice -
Sophia Antipolis, France, October 14, 1996.

[13] P. Martin, The WebKB set of tools: a common scheme for shared
WWW Annotations, shared knowledge bases and information
retrieval, Proceedings of the 5th International Conference on
Conceptual Structures (ICCS’97), Springer Verlag, LNAI 1257,
Seattle, August 4-8, pp. 585-588, 1997.

[14] G.A. Beckwith, C. Fellbaum, D. Gross and K. J. Miller., Intro-
duction to WordNet: an on-line lexical database. International
Journal of Lexicography, Vol. 3, No. 4, pp. 235-244, 1990.

[15] S. Pollitt, A. Burrow and P. Eklund, .In: M.L. Mugnier and J.F.
Sowa (eds,): Proceedings of the 5th International Conference on
Conceptual Structures: Springer Verlag, August 1998.

[16] A. Puder, S. Markwitz and F. Gudermann, Service Trading Using
Conceptual Structures. In: Conceptual Structures: Applications,
Implementations and Theory: pp. 59-73, Springer Verlag, LNAI
994, 1995.

[17] G. Rodríguez and L. Navarro, AlephWeb: a CSCW Large Scale
Trader. www.pangea.org/alephweb.aleph/paper.html

[18] M. Röscheisen, C. Mogensen and T. Winograd, Beyond Brows-
ing: Shared Comments, SOAPs, Trails, and On-line Communi-
ties, In Proceedings of the Third International World-Wide Web
Conference, Darmstadt, Germany, April 1995.

[19] J.F. Sowa, Conceptual Graphs Summary, In: Nagle, T.E., Nagle,
J.A., Gerholz, L.L., and P.W. Eklund (eds,): Conceptual Struc-
tures: Current Research and Practice, Ellis Horwood, 1992, pp.
3-51.


