Embedding Knowledge in Web Documents:
CGs versus XML-based Metadata Languages

Philippe Martin and Peter Eklund

Griffith University, School of Information Technology,
PMB 50 Gold Coast MC, QLD 9726 Australia
{p.eklund,philippe.martin}@gu.edu.au

Abstract. The paper argues for the use of general and intuitive know-
ledge representation languages for indexing the content of Web docu-
ments and representing knowledge within them. We believe these lan-
guages have advantages over metadata languages based on the Extensible
Mark-up Language (XML). Indeed, the representation and retrieval of
precise information is better supported by languages designed to repre-
sent semantic content and support logical inference, and the readability
of such a language eases its exploitation, presentation and direct inser-
tion within a document.To further ease the representation process, we
propose techniques allowing users to leave some knowledge terms un-
declared. We illustrate these ideas with WebKB!, a precision-oriented
information retrieval/annotation tool, and show how lexical, structural
and knowledge-based techniques may be combined to retrieve or gener-
ate knowledge or Web documents. Finally, to overcome the scalability
problems of storing knowledge within Web documents, we propose some
ideas for scalable and cooperatively built knowledge repositories.

1 Introduction

Large-scale search engines for the WWW retrieve entire documents effectively.
However, they can be considered imprecise because they do not exploit and
hence retrieve the semantic content of Web documents. Such content cannot yet
be automatically extracted from general documents. Manually structuring Web
documents, e.g. via mark-up languages such as XML2, allows more precise in-
formation to be retrieved using string-matching and structure-matching tools,
e.g. Web robots such as Harvest®, WebSQL* and WebLog®. However, this ap-
proach is not scalable because fine-grained information is only retrieved if the
documents are thinly structured and the querier knows the structures, their ex-
act names and forms. More flexible and precise knowledge representation and
retrieval can be achieved with knowledge representation languages that support

! http://meganesia.int.gu.edu.au/ phmartin/WebKB/

% http://www.w3.org/ XML/

3 http://harvest.transarc.com/

* http://www.cs.toronto.edu/ websql/

% http://www.cs.concordia.ca/ special /bibdb/weblog.html

logic inference. Many “metadata” languages are currently being developed to
allow people to index Web information resources by knowledge representations
(logical statements) and store them in Web documents. However, these meta-
data languages are insufficient to satisfy several requirements necessary to allow
precise, flexible and scalable information retrieval.

A first requirement for that is that the metadata language is sufficiently in-
tuitive and concise to be easy to use by people (after a short period of training).
Most current knowledge-oriented metadata languages are built above XML, e.g.
RDF® and OML’. The choice of XML as an underlying format ensures that
standard XML tools will be usable to exchange and parse these metadata lan-
guages. However, since XML is verbose, the metadata languages built above
XML are also verbose and are difficult to use without specialized editors. Such
editors do not eliminate the need for people to use a language for representing
knowledge (except in application-dependent editors that only allow predefined
“frames” to be filled). Consequently, as noted by the authors of Ontobroker® [1],
with XML-based languages information has to be written in two versions, one
for machines and another for humans. Additionally, standard XML tools are of
little interest to manage these languages since specialized editors, analyzers and
inference engines are required. To reduce information redundancy, Ontobroker
provides a notation for embedding attribute-value pairs inside an HTML hyper-
link tag. These tags may be used by the document’s author to delimit an element
to represent. Thus, each element may be implicitly referenced in the knowledge
statement within the tag enclosing the element.

Along this same line, a document’s author should be allowed to let some
knowledge statements be visible to the reader. This is an obvious requirement
when an especially intuitive notation can be used, e.g. when graphics can be
made with a visual language® or sentences can be written using a “controlled
language”'®, — a subset of natural language which eliminates sources of am-
biguity. This visualization feature is also handy with any notation when the
document provides explanations about the knowledge statements it stores. In
this way, for example, a knowledge base and its associated documentation can
be integrated within the same document and both accessed using classic searches
(string-matching, navigation from the table of content, etc.) as well as knowledge-
based searches. Though the Ontobroker metadata language was designed to re-
duce information redundancy, statements cannot be shown since they are within
HTML tags. Futhermore, like RDF, the Ontobroker metadata language is essen-
tially a notation for attribute-value pairs. Such a representation is general but
basic and hard to read. Finally, since the indexation of document elements are
made via HTML tags, only the document’s author can index any of its parts.
Others are limited to only those elements that are accessible via URLs.

5 http://www.w3.org/RDF/

7 http://wave.eecs.wsu.edu/ CKRMI/OML.html

8 http://www.aifb.uni-karlsruhe.de/ WBS /broker/

9 http://www.cpsc.ucalgary.ca/ kremer /home.html#visualLanguages
10 http:/ /www-uilots.let.uu.nl/Controlled-languages,/

A metadata language should also be sufficiently precise and general to allow
users to represent any Web-accessible information at the desired level of preci-
sion. This implies that the metadata language is based on an expressive formal
model and that it has a notation allowing the user to exploit the expressivity
of the formal model. Any formalism equivalent to first-order logic and permit-
ting the use of contexts is an appropriate candidate, e.g. KIF'! and Conceptual
Graphs (CGs)'? [10]. It is important not to restrict users but, for efficiency rea-
sons, a search engine may ignore some features in knowledge statements. For
example, a CG-based search engine may ignore references to sets within CGs
and still exhibit adequate precision (the CGs with references to sets are also
retrieved). The ontobroker metadata language and RDF are general but not
precise in the sense that they are oriented towards the representation of en-
tire documents (not arbitrary parts of them) and do not propose conventions
to represent logic-based features, e.g. quantifiers and operators. This limits the
capacity of the statements to be shared.

In summary, the three first requirements for precise, flexible and scalable
information retrieval implies (i) several easy to use notations, some intuitive,
some precise and expressive, and (ii) the possibilities to insert them anywhere
in a Web document. We have satisfied these requirements by building a Web-
accessible tool (CGI server'?) named WebKB!* [6][7] which interprets “chunks”
of knowledge statements in Web documents. Each chunk, i.e. each group of state-
ments, must be delimited by two special HTML marks (“<KR>” and “</KR>") or
the strings “$(” and “)$”. These chunks are visible unless the document’s author
hides them with HTML comment tags. The knowledge representation language
used in each chunk must be specified at its beginning, e.g.: “<KR language="CG">".
At present, WebKB can interpret the linear notation of CGs plus less expressive
but simpler linear notations we have invented: a formalised English, a frame-like
CG linear notation and structures that relate document elements by semantic
relations (some of these structures come from HTML). These simpler notations
are translated into CGs. This formalism has been chosen first because it has a
graphical notation and a linear notation, both concise and easily comprehensi-
ble, and secondly because we can reuse two CG inference engines (CoGITo [3]
and Peirce [2]) that exploit subsumption relations defined between formal terms
for calculating specialization relations between graphs — and therefore between
a query and facts in a knowledge base. Hence, statements and queries may be
made at different levels of granularity. In the future, other notations may be
accepted and other formalisms exploited.

Another requirement is that not all the terms in the knowledge statements
should have to be explicitly declared and organized by each user. Indeed, declar-
ing and organizing terms is a tedious and often complex work that detters most
users, and probably one of the main reasons why so few hypertext systems have

1 http:/ /logic.stanford.edu /kif /kif. html

!2 http://meganesia.int.gu.edu.au/ phmartin/WebKB/doc/CGs.html
3 http:/ /www.w3.org/CGI/

4 http://meganesia.int.gu.edu.au/ phmartin/WebKB/

| Docmment clement indexation

been knowledge-based (MacWeb [8] is an exception). This requirement is a ratio-
nale for semi-formal knowledge representation languages such as concept maps'®
as opposed to logic-based formalisms such as KIF. The use of semi-formal state-
ments is at the expense of knowledge precision and accessibility but allows rapid
expression and incremental refinement of knowledge. When forewarned by a spe-
cial command (“no decl”), WebKB accepts CGs that include some undeclared
terms. We show below how the imprecision may partially be compensated by ex-
ploiting ontologies. Another informal feature accepted by WebKB are notations
for sets within CGs: WebKB ignores them during searches but displays each
retrieved CG in the form it was entered (thus, notations for sets are displayed).

HTML and XML do not allow a user to reference — and hence index — any
part of a document that s/he has not created. An indezation notation allowing
a document element to be referred by its content or occurrence in a document is
required. WebKB provides such a notation.

Information retrieval/handling

Classic 11/H toal (e.&. grep)
Quaay cantaxt

Kinds of results | document elements indexed by the

Constraints on the knowledge

Constraints on indewxcd claments

Evumptes of quertes and screpes | ——— Seicct ane here or copypasee ane beow ——— = |

K B/ ADS]

n.d =
{Txxk] >(5uhzask) >['ruk1
Shec [KADS _of Experti:

nm[xhnsx’mmd of E)qlu'ts:] | masejoin:
pe. needed_for_K ADS_knawledge_engineering:

® run scr bhoml:

® loed _skbi/toplevelOnrology huml: load whatls huml Entty:

o load kb n ool

Spec T Tasm >(s..u e >[‘]’mk] spec [Vehicle], spee Something_related_to_road_aceident,
- lnaﬂ

ec [Coco. Bee]->(0n) -l Beachl:
et [Jery o~ (Mear)<-{Coco. treei->(On)->[Beach];

Fig. 1. The WebKB tool menu and knowledge-based Information Retrieval/Handling
Tool. This ezample shows how a document containing CGs is sent to the WebKB server
and how the command ”spec” is used to retrieve CGs and the images they index

Simply representing knowledge within documents is insufficient, knowledge-
based and string-based commands are also necessary. It is handy to be able to
use them within documents and — if desired — have the results automatically

15 http:/ /www.cpsc.ucalgary.ca/ “kremer/home.html#CM

inserted in the place of the commands. In the hypertext literature, such a tech-
nique is known as dynamic linking, and the generated document is called a dy-
namic document or a virtual document [8]. This idea has many applications, e.g.
adapting a document content to a user. A procedural or declarative language is
necessary to combine the commands and their results. Web robots (e.g. Harvest,
WebSQL, WebLog) perform some document generation in that way but current
metadata languages only allow knowledge representation. WebKB permits the
generation of virtual documents and combines lexical, structural and knowledge-
based data management by proposing (i) commands for searching and joining
CGs, (ii) Unix-like file management commands working on Web-accessible docu-
ments, (iii) a simple Unix shell-like script language to combine commands. These
commands may be inserted in documents. They may also be directly sent to
WebKB by programs or manually from form-based interfaces, e.g. the WebKB
interfaces. Figure 1 shows the WebKB tool menu and the ”Knowledge-based
Information Retrieval/Handling Tool”.

The four following sections respectively illustrate the ideas of the last four
paragraphs. Though this document-based approach is handy, its scalability is
limited. For example, before using knowledge query commands, the WebKB user
must either directly assert some knowledge or use loading commands (such as
“load URL”) to specify Web documents that include the knowledge to exploit.
Considering its features, WebKB may be seen as a knowledge-based directed
Web robot and private annotation tool. To allow users to benefit from the know-
ledge of users they do not know, and therefore to enable WebKB to also be a
knowledge-based shared annotation tool, we are extending it to handle a coop-
eratively built knowledge repository. We address this issue in section 6.

2 Representing Knowledge

To represent knowledge within documents, we advocate the use of knowledge
representation languages over XML-based metadata Languages. To compare the
alternatives, Figure 2 shows how a simple sentence may be represented with CGs
in WebKB, with KIF and with RDF. The sentence is: “John believes that Mary
has a cousin who has the same age as her”.

The CG representation (top) seems simpler than the others. The semantic
network structure of CGs (i.e. concepts connected by relations) has three ad-
vantages: (i) it restricts the formulation of knowledge without compromising
expressivity and this tends to ease knowledge comparison from a computational
viewpoint; (ii) it encourages the users to explicit relations between concepts (as
opposed, for instances, to languages where "slots” of frames or objects can be
used); (iil) it permits a better visualization of relations between concepts.

Even if CGs seem relatively intuitive, they are not readable by everyone.
Often, simpler notations could be used. For instance, WebKB accepts alterna-
tive notations for CGs. We call two of them “Frame-CGs” and “Formalised
English”. In Frame-CGs, the above sentence could be represented in that way:
[Mary. Age: a. Cousin: [Person. Age: al]]. Here are two possibilities

<KR language="CG">
load "http://www.bar.com/topLevelOntology"; //Import this ontology

Age < Property; //Declare Age as a subtype of Property
Cousin(Person,Person) {Relation type Cousin};

[Person:"John"]<-(Believer)<-[Descr: [Person:"Mary"]-
{ (Chrc)->[Age: *al;
(Cousin)->[Person]->(Chrc)->[*a];

}1;
</KR>

<KR language="KIF">
load "http://www.bar.com/topLevelOntology"; //Import this ontology
(Define-Ontology Example (Slot-Constraint-Sugar topLevelOntology))
(Define-Class Age (7X) :Def (Property 7X))
(Define-Relation Cousin(?s 7p) :Def (And (Person ?s) (Person 7p)))
(Exists ((7j Person))
(And (Name 7j John) (Believer ?7j °’(Exists ((?m Person) (7p Person) (7a Age))
(And (Name ?m Mary) (Chrc 7m 7a)
(Cousin ?m ?p) (Chrc 7p 7a)
)
))) </KR>

<!-- RDF notation; assumed location: http://www.bar.com/example -->
<RDF xmlns="http://wuw.w3.org/TR/WD-rdf-schema#"
xmlns:t="http://www.bar.com/topLevelOntology#">
<Class ID="Age"><subClassOf resource="t:Property"/></C1ass>
<PropertyType ID="Cousin" comment="Relation type Cousin">
<range resource="t:Person"/>
<domain resource="t:Person"/></PropertyType> </RDF>

<RDF xmlns="http://www.w3.org/TR/WD-rdf-schema#" xmlns:x="http://www.bar.com/example#"
xmlns:t="http://www.bar.com/topLevelOntology#">
<t:Person bagID="Statement_01"><t:Name>Mary</t:Name>
<t:Chrc><x:Age ID="age"></x:Age></t:Chrc>

<x:Cousin><t:Person><t:Chrc resource="x:age"/></t:Cousin>
</t :Person>

<Description aboutEach="#Statement_01" t:Believer="John"/> </RDF>

Fig. 2. Comparing knowledge representation with CGs, KIF and RDF

in Formalised English: John believes {Mary has for age A and has for
cousin a person who has for age A}. and {Mary has for cousin a
person who has for chrc an age chrc of Mary}(Believer:John).

By default, WebKB accepts that statements expressed in Frame-CGs and
Formalised English include undeclared terms. On the opposite, unless forewarned
by the command “no decl”, WebKB requires that terms used in CGs are declared.

3 Allowing Undeclared Terms in Knowledge Statements

The user may not want to take the time to declare and order most of the terms
s/he uses when representing knowledge. This may, for example, be the case
when a user indexes sentences from various documents for private knowledge
organisation purposes.

To permit this, and still allow the system to perform some minimal semantic
checks and knowledge organisation, we propose the casual user represent know-
ledge with basic declared relation types and leave undeclared the terms used as
concept types. This method has the following rationales.

— If knowledge statements are made from concepts linked by basic relations,
i.e. if the complexity is manifest within concept types rather than in rela-
tion types, only a limited set of relation types are necessary for an appli-
cation. WebKB already proposes a top-level ontology of 200 basic relation
types'® [4] [5] collecting common thematic, mathematical, spatial, temporal,
rhetorical and argumentative relations types.

— WebKB can use relation signatures to give suitable types to the undeclared
terms used as concept types. For instance, in the top-level ontology pro-
posed by WebKB, the relation types Input, Output, Agent, Method, Sub-
Process and Purpose are all defined to have a concept of type Process as
the first argument. Hence, in the previous example, WebKB can infer that
Knowledge_design must be a subtype of Process.

— We have merged the natural language ontology WordNet!” (120,000 words
linked to 90,000 concept types) into our top-level ontology (cf. [4] [5]). When
the WebKB shared repository is implemented and initialized with these on-
tologies, it will be possible for WebKB to semi-automatically relate the unde-
clared terms used as concept types to precise concept types in the repository,
thanks to links between words and concept types and to constraints imposed
by the relation signatures. Consider for example, the following CG where
the terms Cat and Table have not been declared: [Cat]->(0n)->[Table]. In
WordNet, the word cat has 5 meanings (feline, gossiper, X-ray, beat and
vomit) and the word table, 5 meanings (array, furniture, tableland, food and
postpone). In the WebKB ontology, the relation type On connects a concept
of type Spatial_entity to another concept of the same type. Thus, WebKB
can infer that “beat” and “vomit” are not the intended meanings for Cat,

16 http://meganesia.int.gu.edu.au/ phmartin/WebKB/kb/topLevelOntology.html
17 http:/ /www.cogsci.princeton.edu/ "wn/

and “array” and “postpone” are not the intended meanings for Table. To
further identify the intended meanings, WebKB could prompt the following
questions to the user: “does Cat refer to feline, gossiper, X-ray or something
else?” and “does Table refer to furniture, tableland, food or something else?”.
— Knowledge statements are more readily comparable if they follow the same
conventions. The convention of using basic relations is thus important. (The
opposite convention — using primitive concepts and complex relations —
would be much harder to follow). Consider for example the sentence “Mary
is 20 years old”. Following our conventions it is better to use the concept
type Age, e.g. [Person: "Mary"]->(Chrc)->[Age:@20],
rather than the relation type Age, e.g. [Person: "Mary"]->(Age)-> [Integer:20]
unless this relation type has been predefined by a user: '8
relation Age (x,y) is [Agel- { (Chrc)->[Living_entity:#*x];
(Measure)->[Integer:*y];

}

The commands “decl” and “no decl” enable the user to overide the default
modes for the acceptatance of undeclared terms. Furthermore, an exclamation
mark before a type explicitly tells the system that the type was deliberately left
undeclared. Quoted sentences may also be used: they are understood by WebKB
as individual concepts of type “Description”.

Another facility of the WebKB parser is that, like HTML browsers, it ignores
HTML tags (except definition list tags) in knowledge statements. However, when
these statements are displayed in response to a query, they are displayed using
the exact form given by the user, including HTML tags. Thus, the user may
combine HTML or XML features with knowledge statements, e.g. s/he may put
some types in italics or make them the source of hypertext links.

4 Indexing Any Document Element Using Knowledge

4.1 General Cases

We call a Document Element (DE) any textual/HTML data, e.g. a sentence, a
section, a reference to an image or to an entire document. This definition excludes
binary data but includes textual knowledge statements. WebKB allows users to
index any DE of a Web-accessible document (or later of our repository) by
knowledge statements, or connect DEs by relations. Figure 3 shows an example
of each case.

XML provides more ways to isolate and reference DEs than HTML. Since
WebKB exploits the capacities of Web-browsers, the XML mechanisms may
be used by the WebKB users. However, XML does not help users to annotate
others’ documents since DEs cannot be referenced if they have not been explicitly

8 This solution implies that the inference engine expands the relation type definition
when comparing graphs. Few CG engines can perform type expansion.

$(Indexation
(Context: Language: CG;
Ontology: http://www.bar.com/topLevelOntology.html;
Repr_author: phmartin; Creation_date: Mon Sep 14 1998;
Indexed_doc: http://www.bar.com/example.html;)
(DE: {2nd occurence} the red damaged vehicle)
(Repr: [Color: redl<-(Color)<-[Vehicle]l->(Attr)->[Damaged])
)8

$(DEconnection
(Context: Language: CG;
Ontology: http://www.bar.com/topLevelOntology.html;
Repr_author: phmartin; Creation_date: Mon Sep 14 1998;)
(DE: {Document: http://www.bar.com/example.html})
(Relation: Summary)
(DE: {Document: http//www.bar.com/example.html}
{section title: Abstract})
)8

Fig. 3. A language for indexing or connecting any Web-accessible document element

delimited by the documents’ authors. Therefore, the WebKB facility of referring
to a DE by specifying its content and its occurrence number will still be useful.

4.2 A Simple Example

The above indexation notations allow the statements and the indexed DEs to
be in different documents. Thus, any user may index any element of a document
on the Web. Figure 1 presents a general interface for knowledge-based queries
and shows how a document containing knowledge must be loaded in the WebKB
processor before being queried.

WebKB also allows the author of a document to index an image by a know-
ledge statement directly stored in the “alt” field of the HTML “img” tag used
to specify the image. We use this special case of indexation to present a simple
illustration of WebKB'’s features. This example, shown in Figure 5, is a good
synthesis but in no way representative of the general use of WebKB — it is
not representative because it mixes the indexed source data (in this case, a col-
lection of images), their indexation, and a customized interface to query them,
in a single document. Figure 4 shows a part of this document that illustrates
the indexation. The result of the query shown in Figure 5 is displayed in Figure 6.

Fig. 4. The HTML source of the indexation of the images shown in Figure 5

Stwraight jerdes and curved jenid

Spatial_relation = |

Panorama of the photo base

‘Warm areas

Islands and beaches

Fig. 5. Images, knowledge indexations and a customized query interface contained
within a same document (the example query shows how the command “spec” which

looks for specializations of a CG can be used to retrieve images indexed by CGs. The
results are shown in Figure 6)

but some are not.

Fig. 6. The document generated in response to the query in Figure 5

5 Commands to Exploit Knowledge and Documents

5.1 Lexical and Structural Query Commands

Because WebKB proposes knowledge representation and query commands, and
a script language, we have not felt the need to give it a lexical and structural
query language as precise as those of Harvest, WebSQL and WebLog. Instead,
we have implemented some Unix-like text processing commands for exploiting
Web-accessible documents or databases and generating other documents, e.g.
cat, grep, fgrep, diff, head, tail, awk, cd, pwd, wc and echo. We added the
hyperlink path exploring command “accessibleDocFrom”. This command lists
the documents directly and indirectly accessible from given documents within
a maximal number of hyperlinks. For example, the following command lists the
HTML documents accessible from http://www.foo.bar/foo.html (maximum 2
levels) and that include the word “knowledge” in their HTML source code.
> accessibleDocFrom -maxlevel 2 -HTMLonly http://www.foo.bar/foo.html
| grep -i knowledge //’?-1i’’ to search without regard to case

Lexical/structural queries — and knowledge queries — may be embedded in-
side documents so parts of these documents may be generated by WebKB using
document elements or knowledge stored in other documents. Alternatively, with
HTML documents, Javascript may be used for associating a query to an hyper-
text link in such a way that the query is sent to the WebKB processor when the
link is activated (then, as for any other query, the WebKB processor generates
an HTML document that includes the results; if the query has been sent from a
Web-browser, this “virtual” document is automatically displayed).

5.2 Knowledge Query Commands

WebKB has commands for displaying specializations or generalizations of a con-
cept or relation type or an entire CG in a knowledge base. At present, queries
for CG specializations only retrieve connected CGs: the processor cannot re-
trieve paths between concepts specified in a query. If a retrieved CG indexes a
document element, it may be presented instead of the CG (Figure 6 gives an
example). In both cases, hypertext links are generated to reach the source of
each answer presented in its original document. What follows is an example of
such an interaction, assuming that http://www.bar.com/example.html is the file
where the indexation in Figure 3 has been stored, and Something is the most
general concept type.
> load http://www.bar.com/example.html

> spec [Something]->(Color)->[Color: red]
[Color: red]<-(Color)<-[Vehicle]l->(Attr)->[Damaged];
Source
> use Repr //display represented DEs
> spec [Something]l->(Color)->[Color: red]

the red damaged vehicle
Source

Queries for specializations give the user some freedom in the way s/he ex-
presses queries: searches may be done at a general level and subsequently refined
according to the results. However, the exact names of types must be known.
To improve this situation, WebKB allows the user to give only a substring
of a type in a query CG if s/he prefixed this substring by the character %.
WebKB generates the actual request(s) by replacing the substring by the manu-
ally /automatically declared types that include that substring. Replacements that
violate the constraints imposed by relation signatures or individual types are dis-
carded. Then, each remaining request is displayed and executed. For example,

spec [/thing] will trigger the generation and execution of spec [Something].

Knowledge query commands may be combined with the script language to
generate complex documents, perform consistency tests on the knowledge base,
or solve problems procedurally. The WebKB site provides many examples of
queries and scripts. For example, one script solves the Sisyphus-I room allocation
problem!®. The reader is invited to test these examples?.

Here is an example of a script that shows that the procedural language frees
us to add some special operators to our query language, such as the modal
operators “few” and “most”, since they are easily definable by the user.

spec [Something] | nbArguments | set nbCGs;
spec [Cat] | nbArguments | set nbCGsAboutCat;
set nbCGsdiv2 ‘expr $nbCGs / 2°;

if ($nbCGsAboutCat > $nbCGsdiv2)

{ echo '"Most CGs of the base are about cats"; }

5.3 Knowledge Generation Commands

The only type of knowledge generation commands in WebKB are commands that
join CGs. Various kinds of joins may be defined but WebKB only proposes joins
which, given a set of CGs, create a new CG specializing each of the source CGs.
Though the result is inserted in the CG base, it may not represent anything true
for the user, but provides a device for accelerating knowledge representation. For
instance, in WebKB, CGs related to a type may be collected and automatically
merged via a command such as this one: spec [TypeX] | maxjoin. The result
may then serve as a basis for the user to create a type definition for TypeX.

The following is a concrete example for the maximal join command.
> maxjoin [Cat]->(On)->[Mat] [Cat:Tom]->(Near)->[Tablel
[Cat:Tom]- { (On)->[Mat]; (Near)->[Tablel; }

19 http://meganesia.int.gu.edu.au/ phmartin/WebKB /kb/sisyphus1.html
20 http://meganesia.int.gu.edu.au/ phmartin/WebKB/
or if this server is down: http://www.int.gu.edu.au/ phmartin/WebKB/

6 Scalable Cooperatively Built Knowledge Repositories

Some servers, called ontology servers, support shared knowledge repositories, e.g.
the Ontolingua ontology server?! and Ontosaurus?2. However, they are not us-
able for managing large quantities of knowledge and, apart from AI-Trader [9]?3,
they do not allow the indexation and retrieval of parts of documents. Finally,
support of cooperation between the users is essentially limited to consistency en-
forcement, annotations and structured dialogues, as in APECKS?*, Co42?% and
Tadzebao?®.

We are currently extending WebKB to handle a knowledge repository. As this
implementation has just begun, we do not detail this extension?’. However, here
are the five points through which we address scalability: (i) a scalable multi-user
persistent object repository to support the storage and exploitation of knowledge
structures (we have chosen Shore?®); (ii) algorithms allowing the exploitation of
large-scale dynamic taxonomies efficiently (we have chosen Fall’s algorithms??;
(iii) visualisation techniques (mainly the handling of aliases for terms and the
generation of views) to avoid lexical conflicts and enable users to focus on certain
kinds of knowledge; (iv) protocols to allow users to solve semantic conflicts via
the insertion of new terms and relations in the common ontology and, in some
cases, in the knowledge of other users; (v) conventions for representing knowledge
to improve the automatic comparison of knowledge from different users and
hence their consistency and retrieval.

Though these five points permit the exploitation of a large knowledge repos-
itory (that is essential for efficiency reasons and practical use), it is also clear
that for efficiency and reliability reasons, a unique server cannot be used to
handle a universal knowledge repository by all Web users. Knowledge has to be
distributed and mirrored on various knowledge servers. However, since there is
no static conceptual schemas in knowledge bases, the techniques of distributed
database systems - such as AlephWeb3°, Hermes3! and Infomaster®?, cannot all
be reused since they exploit a fixed conceptual schema (ontology) associated to
each database. In knowledge bases, the ontology is constantly modified by the
users.

2! http://WWW-KSL-SVC.stanford.edu:5915/

22 http:/ /www.isi.edu/isd/ontosaurus.html

23 http://www.vsb.informatik.uni-frankfurt.de/projects/aitrader/intro.html

24 http://www.psychology.nottingham.ac.uk/staff/ Jenifer. Tennison /APECKS/
25 http://ksi.cpsc.ucalgary.ca/KAW /K AW96/euzenat /euzenat96b.html

26 http:/ /ksi.cpsc.ucalgary.ca:80/KAW /K AW98/domingue/

7 http://meganesia.int.gu.edu.au/ phmartin/WebKB/doc/coopKBbuilding.html
%8 http://www.cs.wisc.edu/shore/

29 http://www.cs.sfu.ca/cs/people/GradStudents/fall /personal /index.html

30 http://www.pangea.org/alephweb.aleph/paper.html

31 http://www.cs.umd.edu/projects/hermes/

32 http://infomaster.stanford.edu/infomaster-info.html

A first step to the distribution of a knowledge repository is to duplicate it
on several servers, with updates made on a server automatically duplicated in
other servers. Some servers may be dedicated to searches and others to updates.

A second step is to have general servers and specialized servers. General
servers would probably have knowledge bases with a content similar to the CYC
knowledge base33. A specialised server would store the same knowledge as gen-
eral servers plus knowledge related to a well-defined set of objects, e.g. know-
ledge expressed with the subtypes of certain types. Since these sets of objects
are well-defined (extensively or via definitions), a general server would store the
URLs of these servers and, when answering a query, would delegate the query
to the relevant servers if more precision is required. These sets of objects might
be determined by the managers of specialized servers, or according to the fre-
quency of accesses to objects in knowledge repositories. Whatever the specialised
server a user updates, if the knowledge it enters is relevant to other servers (e.g.
if the knowledge is expressed with general terms), it should be automatically
duplicated in these servers The rationale of all these duplications is to speed
searches and simplify the query mechanisms by avoiding, whenever possible,
parallel searches in various servers and then the composition of the results.

Other steps may be necessary, but what should be avoided in this knowledge-
based approach (hence precision-oriented) is to let the specialized servers devel-
opp independently of each others instead of being part of a unique consistent vir-
tual knowledge repository. Otherwise, conceptual queries and cooperation across
the repositories would no longer be possible; this is the case in current traders
where the repository most relevant repository to answer a query is automatically
”guessed”.

Finally, knowledge servers should not be limited to the storage of knowledge
statements but should also allow the storage and handling of knowledge-based
and document-based commands similar to the storage and handling procedure
we described for documents.

7 Conclusion

Current information retrieval techniques are not knowledge-enabled and hence
cannot give precise answers to precise questions. To overcome this problem, a
current trend on the Web is to allow users to annotate documents using metadata
languages.

On the basis of ease and representational completeness, we have argued for
the use of general and intuitive knowledge representation languages such as CGs
rather than the direct use of XML-based languages. To allow users to represent
knowledge at the level of detail they require, we have proposed simple notations
for restricted knowledge representation cases and a technique allowing users to
leave knowledge terms undeclared. Our knowledge representation/retrieval tool
WebKB supports this approach and allows its users to combine lexical, structural
and knowledge-based techniques to exploit or generate Web documents.

33 http://www.cyc.com/

We have shown why the WebKB features are needed for precision and scala-
bility. To overcome the scalabilitity limitations inherent to directed Web robots
and private annotation tools, we are extending it to also handle a scalable co-
operatively built knowledge repository.

Acknowledgments

This work is supported by a research grant from the Australian Defense, Science
and Technology Organisation.

References

1. Decker, S., Fensel, D.: Ontobroker: Ontology Based Access to Distributed and
Semi-Structured Information. In: Meersman, R. (eds.), Semantic Issues in Multi-
media Systems, Kluwer Academic Publisher (in press), Boston (1999)

2. Ellis, G.: Managing Complex Objects. Ph.D thesis, Queensland University, Aus-
tralia (1995)

3. Haemmerlé, O.: CoGITo: une plate-forme de développement de logiciels sur les
graphes conceptuels. Ph.D thesis, Montpellier II University, France (1995)

4. Martin, Ph.: Using the WordNet Concept Catalog and a Relation Hierarchy
for Knowledge Acquisition. In: Peirce’95, 4th Peirce workshop, California (1995)
http://www.inria.fr/acacia/Publications/1995/peirce95phm.ps.Z

5. Martin, Ph.: Ezploitation de graphes conceptuels et de documents structurés et
hypertextes pour l’acquisition de connaissances et la recherche d’informations, PhD
Thesis, University of Nice - Sophia Antipolis, France (1996)

6. Martin, Ph., Eklund, P.. WWW Indexation and Document Navigation Using Con-
ceptual Structures. In: ICIPS’98, 2nd IEEE International Conference on Intelligent
Processing Systems, IEEE Press (1998) 217-221

7. Martin, Ph., Eklund, P.: Embedding Knowledge in Web Documents. In: WWWS§,
8th International World Wide Web Conference (in press), Toronto, Canada (1999)

8. Nanard, J., Nanard, M., Massotte, A-M., Djemaa, A., Joubert, A., Betaille,
H., Chauch, J.: Integrating Knowledge-based Hypertext and Database for Task-
oriented Access to Documents. In: DEXA’93, LNCS Vol. 720, Springer-Verlag,
Prague (1993) 721-732

9. Puder, A., Romer, K.: Generic Trading Service in Telecommunication Platforms.
In: ICCS’97, 5th International Conference on Conceptual Structures, LNAI 1257
Springer Verlag (1997) 551-565.

10. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, Reading, MA (1984)

