
Knowledge Representation in CGLF, CGIF,

KIF, Frame-CG and Formalized-English

Philippe Martin

Distributed System Technology Centre, Griffith University
PMB 50 Gold Coast MC, QLD 9726 Australia

philippe.martin@gu.edu.au

Abstract. This article shows how CGLF, CGIF, KIF, Formalized-En-
glish and Frame-CG can be used in a panorama of knowledge repre-
sentation cases. It highlights various inadequacies of CGLF and CGIF,
advantages provided by high-level expressive notations, and the KIF
translations provide a logical interpretation. Knowledge providers may
see this document as a guide for knowledge representation. Developers
may see it as a list of cases to take into account for their notations and
inferences engines.

1 Introduction

A knowledge-based system (KBS) generally uses only one model to store
and exploit knowledge, e.g. a semantic network model such as Conceptual
Graphs (CGs) [1], but may import/export (i.e. accept/present) representations
in various notations, e.g. CGDF (CG Display Form), CGLF (CG Linear Form),
CGIF (CG Interchange Format) and KIF (Knowledge Interchange Format) [2].

Inference engines may or may not exploit all parts of the stored knowledge.
E.g. knowledge retrieval engines may be efficient and provide interesting results
by considering all contexts as positive contexts and ignoring the various logical
meanings of collection types. The more the model has features, the more inferen-
cing can be done. The more the notations are expressive, the more information
can be entered precisely, exploited, presented and exchanged. In this view, the
issues of computability and decidability are not related to notations or models
(provided they are not restricting) but to inference engines: with expressive nota-
tions, each engine developer may decide which features to exploit in order to deal
with the problems of efficiency, consistency and completeness. Thus, restricting
notations can never be an advantage, they can only limit and bias knowledge
modelling and the many possible inferencing techniques. This article does not
explore the computability of inferencing operations made possible by expressive
notations; this vast subject is the focus of the description logics litterature.

Are some notations better than others for knowledge representation and ex-
change? According to the above, expressiveness is one criteria. Readability and
conciseness are important too, since they ease the understanding of knowledge
and, for the developers, ease debugging. Knowledge entering easiness is a criteria

U. Priss, D. Corbett, and G. Angelova (Eds.): ICCS 2002, LNAI 2393, pp. 77–91, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

78 Philippe Martin

related to conciseness and how high-level the notation is (i.e. how many ontolo-
gical distinctions have a special intuitive syntax). Also related and important is
the knowledge normalizing effect of the notation: the fewer choices a knowledge
provider has for representing a piece of information (in a simple way), the eas-
ier it is to develop an inference engine (or knowledge matching technique) that
can relate and compare this representation to other ones. Thus, high-level ex-
pressive notations seem better for knowledge representation and exchange than
low-level expressive notations such as KIF, or low-level restricted notations such
as RDF/XML.

From a knowledge provider’s viewpoint, another problem (with all notations
but especially low-level or restricted ones), is how to express knowledge. The
documentations about notations often only provides a grammar, a few simple
examples, and omit to explain how to represent more complex cases commonly
found in natural language sentences, or to state that some of these cases cannot
be represented. This lack of details also make notations difficult to compare. For
example, the documentations of CGIF [1] and RDF/XML [3] are currently very
poor. The documentation of KIF is completed by the Ontolingua library1 but
several knowledge representation cases are still difficult to find. Knowledge rep-
resentation with CGLF is relatively well documented in [8] and [9] but CGLF is
not standardized and inconsistent usages are often encountered, even in Sowa’s
descriptions [8] [9]. Finally, the logical interpretation of many keywords (syntac-
tic sugar for some features) is not always provided, as for example is the case
for CGIF and RDF/XML.

To provide some answers to the previous questions and problems, this article
presents a panorama of knowledge representation features and shows how various
notations can be used (or extended to be used) to cover these features. (We
focused on features that are commonly required to represent of natural language
sentences and knowledge representation in general, e.g. numerical quantifiers,
but rarely or badly handled by most notations; [8] and [9] were initially used
as models). In addition to CGLF, CGIF and KIF, this document presents two
notations derived from CGLF and designed to be as intuitive2 as possible in
all the presented cases: Formalized English (FE) and Frame-CG (FCG) [6] 3.
(RDF/XML has also been examined4 but because of space limits, the results
are not presented here)5.

1 http://www-ksl-svc.stanford.edu:5915/
2 The use of English articles or expressions as (extended) quantifiers, one of our ideas
to obtain a more intuitive and “knowledge normalizing” notation, was also applied
(although to a less extent) in KM, the Knowledge Machine notation [4].

3 WebKB-1, our first Web-based KBS, imports and exports CGLF, FCG and FE.
WebKB-2 [7] currently only uses FCG and partially exports in RDF/XML, but will
later also import and export in FE, CGLF, CGIF and KIF. Grammars and parsing
examples of these notations are at: http://www.webkb.org/doc/grammars/

4 See http://www.webkb.org/doc/translations.html
5 This article also only presents a panorama of “logical features”; ontological examples
in FCG can be found on the WebKB site: http://www.webkb.org

Knowledge Representation in CGLF, CGIF, KIF, Frame-CG 79

Knowledge providers may see this document as a guide for knowledge rep-
resentation. KBS developers may see it as a list of cases to take into account.
Language developers may see it as a workbench for comparing their notations
to others. The translation into KIF also provides a logical interpretation for the
other notations.

In each example of this article, we follow the lexical conventions (e.g. singular
nouns, English spelling) and ontological conventions that we advocated in [6] for
knowledge comparison, retrieval and exchange. Except in Section 11 (which deals
with category declaration) the categories are supposed to be already declared.

2 Conjunctive Existentially Quantified Statements

Here is an example of such simple forms of knowledge. “E” is for “English”.

E: Tom owns a dog that is not Snoopy.
FE: Tom is owner of a dog different_from Snoopy.
FCG: [Tom, owner of: (a dog != Snoopy)]
CGLF: [T:Tom]<-(owner)<-[dog:*x!=Snoopy] //T: uppermost concept type
CGIF: [dog:*x] (owner ?x Tom) (different_from ?x Snoopy)
KIF: (exists ((?x dog)) (and (owner ?x Tom) (/= ?x Snoopy)))

A problem is that different_from is not in the CG standard [1], thus leading
people to use other identifiers for this basic form of negation and hence making
knowledge matching difficult. As long as the CG standard, or an ontology referred
by the CG standard, does not introduce a number of keywords for common
relations and quantification, knowledge sharing and inferencing with CG will
remain difficult.

The CGLF statement uses “!=” in the declaration of a coreference variable to
specify that the variable does not refer to a certain individual. This syntax has
often been used, e.g. by Sowa [8] [9], but is not included in the minimal CGLF
grammar given in the CG standard [1]. We have used it because it is convenient
and semantically equivalent to what is expressed with the other notations.

3 Contextualization

Contexts allow us to represent statements over statements. Contexts are often
represented via delimitors, e.g. ‘...’ in FE, [...] in FCG, ’(...) and ˆ(...) in KIF.

E: Tom believes Mary now likes him (in 2002) and before she did not.
FE: Tom is believer of ‘ *p ‘Mary is liking Tom’ at time 2002’

and is believer of ‘!*p is before 2002’.
FCG: [Tom,believer of: [*p [Mary, agent of:(a liking,object:Tom)],time:2002],

believer of: [!*p, before: 2002]]
CGLF:[proposition: *p [T:Mary]<-(agent)<-[liking]->(object)->[T:Tom]]

[T:Tom]- { (believer)<-[[situation: ?p]->(time)->[time:"2002"],
(believer)<-[[situation:~?p]->(before)->[time:"2002"]] }

CGIF:[proposition *p: (agent [liking *l] Mary) (object ?l Tom)]
(believer [situation: (time [situation: ?p] "2002")] Tom)
(believer [situation: (before [situation:~[?p]] "2002")] Tom)

KIF: (exists (?p)
(and (= ?p ’(exists((?x liking)) (and (agent *l Mary)(object ?l Tom))))

(believer ^(time ,?p 2002) Tom) //’,?p’->the value of ?p is quoted
(believer ^(before (not ,?p) 2002) Tom)))

80 Philippe Martin

Relations of type believer, time and before connect an instance of the type
situation to another object. In CG, it is customary to distinguish the “proposi-
tion” stated by a statement/graph/formula from the described “situation”. This
distinction is explicit in CGLF and CGIF above. However, making this distinc-
tion is sometimes difficult for novices, and it is inconvenient because it leads to
adding several intermediary contexts. Since these contexts can be automatically
inserted by a parser according to the signatures of the used relations, we have
not included the intermediary contexts in the other notations. (We also assumed
parsers can understand that 2002 is a date, based on relation signatures).

In CGLF and CGIF, a coreference variable is introduced with the prefix ’*’
and re-used within the same context with the prefix ’?’. Thus, two embedded
sibling contexts may introduce variables with the same name but not referring
to the same object. We do not think this approach is easy to follow.

Instead, in FE and FCG, variables may be prefixed by ’?’ or ’*’ (or ’@’ for
collections, as in KIF) and a variable introduction is most often distinguished
by being used with a type and a quantifier (hence, a variable introduction must
precede its re-use). When, within a graph, a variable re-use exists in a context
(c1) different from the context (c2) where the variable has been introduced,
the convention is that the variable is assumed to have been introduced in the
minimum upper context embedding c1 and c2 (in CGLF and CGIF, this has to
be done explicitly by the user but this can be cumbersome and counter-intuitive).

Finally, FE and FCG also permit the introduction of free variables with the
prefix ’ˆ’. Their semantics are the same as in KIF: within statements (as opposed
to queries), these variables are assumed to be introduced with an universal quan-
tifier in some upper context (as before, the lowest context that includes all the
introductions and re-uses of the variables).

4 Universal Quantification

E: Animals have exactly one head.
FE: Any animal has for part 1 head.
FCG: [any animal, part: 1 head]
CGLF: [animal: @forall]->(part)<-[head: @1]
CGIF: (part [animal: @forall] [head: @1])
KIF: (forall ((?a animal)) (exists1 ’?h (and (head ’?h) (part ?a ’?h))))

Here is our KIF definition of exists1:

(defrelation exists1 (?var ?predicate) :=
(truth ^(exists (,?var) (and (,?predicate ,?var)

(forall (?y) (=> (,?predicate ?y) (= ,?var ?y)))))))

Problem with the CGLF and CGIF statements: @1 is common but not stan-
dard.

5 Lambda Abstraction, Percentage, Possibility, Valuation

E: At least 93% of healthy birds can fly.
FE: At least 93% of [bird with chrc a good health] can be agent of a flight.
FCG: [at least 93% of (bird, chrc: a good health), can be agent of: a flight]

Knowledge Representation in CGLF, CGIF, KIF, Frame-CG 81

CGLF:[physical_possibility:
[lambda(b)[bird:*b]->(chrc)->[health]->(measure)->[value:good]: @>93%]
<-(agent)<-[flight]]

CGIF:[(lambda(bird *b) [health *h] (chrc ?b ?h) (measure ?h good)) *x: @>93%
[physical_possibility: (agent [flight] *x)]]

KIF: (defrelation healthy_bird (?b) :=
(exists ((?h health)) (and (bird ?b) (chrc ?b ?h) (measure ?h good))))

(forAtLeastNpercent 93 ’?x healthy_bird
(exists ((?f flight)) (physical_possibility (agent ?f ’?x))))

Here is our KIF definition of forAtLeastNpercent (and associate functions):

(defrelation forAtLeastNpercent (?n ?var ?type ?predicate) :=
(exists ((?s set))
(and(truth ^(forall (,?var) (=> (member ,?var ,?s) (,?type ,?var)))

(>= (numMembersSuchThat ,?s ,?predicate) (/ (* (size ,?s) ?n) 100)))))

(define-function numMembersSuchThat (?set ?p) :-> ?num :=
(if (and (set ?set) (predicate ?p)) (numElemsSuchThat (listOf ?set) ?p)))

(define-function numElemsSuchThat (?list ?p) :-> ?num
(cond ((null ?list) 0)

((list ?list) (if ?p (1+ (numElemsSuchThat (rest ?list) ?p))))))

The CGLF and CGIF representations have several problems.
First, although @>93 is permitted as “defined quantifier” by the CG standard,

@>93% is syntactically incorrect. Furthermore, since a “defined quantifier” can
be anything and cannot actually be defined, its meaning is left implicit (the
standardization of common extended quantifiers such as @>93% is necessary).

Second, physical_possibility is not in the current CG standard.
Third, only the agent relation should be contextualized. In CGLF, this is cum-

bersome. In CGIF, should the concept with type physical_possibility be in
the referent part of the concept with the numerical quantifier (@>93%)? What is
the actual meaning of this construction? How can the scope of this quantifier
be delimited otherwise? The CG standard says that “for complex mixtures of
quantifiers, the scope can be delimited by transparent contexts (marked by con-
text brackets [] with no type label)”. But is it consistent with the other uses of
concept embedding?

Fourth, good is not in the CG standard. FE and FCG have five keywords for
quantitative valuation: good, bad, important, small, big, great. This allows the
user to avoid introducing adjectives (categories with adjectives as names) into the
ontology and hence makes it more (re-)usable [6]. We do not believe that average
users can or should define valuations for each possible measurable quantity (e.g.
what would good_boy, good_work, good_food and bad_food mean?).

Fifth, measure and value are not standard either. Extensions or ontological
conventions are needed to permit knowledge exchange and exploitation.

Sixth, in the CGIF statement, should *b and *x be merged into a single
variable? The CG standard does not give indications.

Seventh, how to represent lambda-abstractions in CGLF? Sowa put them in
referent fields of concepts, and used the character λ in his articles and the HTML
encoding of this character (λ) in the CG standard (and sometimes even
λ₁ and λ₂). We adopted a more
classic and consistent notation closer to the one used in CGIF.

82 Philippe Martin

We have not found a simple way to represent a lambda-abstraction (that is, an
anonymous type declaration) in KIF. Hence, we used a normal type declaration.

The above example can be modified to refer to “most birds” instead of “93%
of birds”. In FE and FCG, the keyword most may be used and is is equivalent
to at least 60% (hence, it can be translated to KIF in this form). In CGLF
and CGIF, @most may be used but its meaning has not been made explicit.

6 Negations, Exclusions and Alternatives

We have already seen two forms of negation: the different_from relation (/= in
KIF), and the negation of a statement (“not” in KIF) which is more difficult to
exploit by inference engines and leaves room for ambiguity. For example, “Tom
does not own a blue car” may mean that “Tom has a car but not blue” or
“Tom does not have a car”. Thus, it is better to use the first form, or break
statements into smaller blocks connected by coreference variables to reduce or
avoid ambiguities.

Here is a variant of the first form: negation on types.

E: Tom owns something that is not a car.
FE: Tom is owner of a !car. FCG: [Tom, owner of: a !car]
CGLF:[T:Tom]<-(owner)<-[~car:*] CGIF: (owner [~car] Tom)
KIF: (exists (?type ?x) (and (owner ?x Tom) (holds ?type ?x) (/= ?type car)))

Exclusion between objects (and hence, some forms of negation) may also be
represented via collections of exclusive objects. FE and FCG use OR-collections
and XOR-collections as syntactic means to store “or” and “xor” relations
between objects (types, instances or statements). Here is an example of OR-
collection between instances. (Note: red, yellow and orange are not instance
but subtype of color, and have many subtypes, e.g. crimson, dark_red and
chrome_red. Their instances are the actual occurrences of color that physical
objects have.)

E: Tom’s car is red, yellow or orange.
FE: Tom is owner of a car that has for color OR{a red, a yellow, an orange}.
FCG: [Tom, owner of: (a car, color: OR{a red, a yellow, an orange})]
CGLF:[Tom]<-(owner)<-[car]->(type)->[TYPE: OR{red,yellow,orange}]
CGIF:[car:*x] (owner *x Tom) (color *x [red|yellow|orange:])
KIF: (exists ((?x car) ?c)

(and (owner ?x Tom) (color ?x ?c) (or (red ?c)(yellow ?c)(orange ?c))))

There is no usual way to represent OR collections in CGLF; we used the
FCG way rather than the CGIF way because it is more general (in CGIF, only
types can be OR-ed without introducing contexts).

In this example, it would have been simpler to use a type such as warm_color
instead of the OR-collection of red, yellow and orange (and this form makes
inferencing easier). More generally, this section shows that a negation can be
represented in numerous ways and that these representations are difficult for an
inference engine to compare and hence exploit fully. Both for knowledge exchange
with frame-based systems and for knowledge inferencing, different_from rela-
tions between instances or types should be prefered to other forms of negations.

Knowledge Representation in CGLF, CGIF, KIF, Frame-CG 83

7 Collections and Quantifier Precedence

Collections have been introduced in the previous section and via examples using
numerical quantifiers. In this section, we show how various interpretations of the
English sentence “4 judges have approved 3 laws” (and some variations of it)
can be interpreted. By studying how to represent relations between members of
two simple collections, we illustrate the importance of specifying how a collec-
tion must be interpreted, and show how to handle complex cases of quantifier
precedence (between numerical, existential and universal quantifiers).

The sentence “4 judges have approved 3 laws” is ambiguous. The 4 judges may
have individually or collectively approved 3 laws (the same 3 or not), and “collec-
tively” may have two meanings: the participation in a “unique” approval act or
the approval of “most” of the laws (or a combination of both as illustrated in the
last example of this section). In this paper, “judges acting together/collectively”
means that “there exists an act and each of the judges is an agent of that act”.
This interpretation of “collectiveness” was used by Sowa in [8] and implies that
the act can only be represented by a concept node, not by a relation node (this
has not been made explicit by Sowa).

In CGs [8], any collection in a concept of a CG can be specified as having
a distributive interpretation (each member of the collection individually partic-
ipates to the relations associated with the concept), a collective interpretation
(the members collectively participate in the relations associated with the con-
cept), a default interpretation (an unspecified mix of collective and distributive
interpretation) or a cumulative interpretation (the relations are about the col-
lection itself). (The current CG standard does not specify what the various
interpretations of a collection can be, not even within the CGIF grammar; it
mentions the keyword Col as a “collective designator” but not the keywords
Dist and Cum used in [8]).

The first example keeps the ambiguity of the above sentence (both collections
have the default interpretation). The ‘s’ at the end of judges and laws in the
FE and FCG representations are supposed to be automatically removed (as does
WebKB-2 when a numerical or universal quantifier is involved). To highlight the
logical interpretations, this section provides predicate logic (PL) translations
instead of FE translations.

E: 4 judges have (each/together) approved 3 laws.
FCG: [4 judges, agent of: (an approval, object: 3 laws)]
CGLF: [judge:{*}@4 @certain]<-(agent)<-[approval]->(object)->[law:{*}@3]
CGIF: (agent [approval:*a] [judge: @4 @certain]) (object ?a [law: {}@3])
KIF: (forAllN 4 ’?j judge (forAllN 3 ’?l law

(exists ((?a approval)) (and (agent ?a ’?j) (object ?a ’?l)))))

PL: ∃js set(js) ∧ size(js, 4) ∧ ∀j ∈ js ∃ls set(ls) ∧ size(ls, 3) ∧ ∀l ∈ ls

∃a approval(a)∧ agent(a, j) ∧ object(a, l)

For modularity, we introduced the “quantifier” forAllN.

(defrelation forAllN (?num ?var ?type ?predicate) :=
(exists ((?s set)) (and (size ?s ?num)

(truth ^(forall (,?var) (=> (member ,?var ,?s)
(and (,?type ,?var) ,?predicate)))))))

84 Philippe Martin

In CGLF and CGIF, the order of the quantifiers at a same level in a context
is specified via a simple convention: the existential quantifier marked by the
keyword @certain has precedence over the universal/numerical quantifiers which
have precedence over the over existential quantifiers. Remaining ambiguities have
to be solved by the user via the addition of contexts. In FE and FCG, the order
and scope of the quantifiers follow the order and structure of the graphs. The
next example shows a simple inversion of the quantifier scopes.
E: 3 laws have been approved by 4 judges (each/together).
FCG: [3 laws, object of: (an approval, agent: 4 judges)]
CGLF: [judge:{*}@4]<-(agent)<-[approval]->(object)->[law:{*}@3 @certain]
CGIF: (agent [approval:*a] [judge:@4]) (object ?a [law: {}@3 @certain])
KIF: (forAllN 3 ’?l law (forAllN 4 ’?j judge

(exists ((?a approval)) (and (agent ?a ’?j) (object ?a ’?l)))))

PL: ∃ls set(ls) ∧ size(ls, 3) ∧ ∀l ∈ ls ∃js set(js) ∧ size(js, 4) ∧ ∀j ∈ js

∃a approval(a) ∧ agent(a, j) ∧ object(a, l)

In FE and FCG, the collective interpretation is specified via the keywords set
of, group of, together, bag of, list of, sequence of or alternatives (the
first three are synonyms; in this paper, we most often use set). In CGLF and
CGIF, the keyword Col is used, and the collection is assumed to be a set.

If we take the two previous examples and gradually introduce the collective
interpretation for the collections, we obtain five different logical interpretations
(instead of six because when both collections are collectively interpreted, the
inversion of quantifier scopes does not change the meaning). Below are three of
these combinations (the other two are: “A group of 3 laws has been approved
by 4 judges” and “A group of 4 judges has approved 3 laws”). In the third case,
we give the three equivalent FCG statements.
E: 4 judges have (each/together) approved a group of 3 laws.
FCG: [4 judges, agent of: (an approval, object: a set of 3 laws)]
CGLF: [judge:{*}@4 @certain]<-(agent)<-[approval]->(object)->[law:Col{*}@3]
CGIF: (agent [approval:*a] [judge:@4]) (object ?a [law:@Col{}@3 @certain])
KIF: (forAllN 4 ’?j judge (exists ((?ls set) (?a approval))

(forAllIn ?ls 3 ’?l law (and (agent ?a ’?j) (object ?a ’?l)))))

PL: ∃js set(js) ∧ size(js, 4) ∧ ∀j ∈ js ∃ls set(ls) ∧ size(ls, 3) ∧
∃a approval(a) ∀l ∈ ls agent(a, j) ∧ object(a, l)

E: 3 laws have been approved by a group of 4 judges.
FCG: [3 laws, object of: (an approval, agent: a set of 4 judges)]
CGLF: [judge:Col{*}@4]<-(agent)<-[approval]->(object)->[law:{*}@3 @certain]
CGIF: (agent [approval:*a] [judge:@Col{}@4]) (object ?a [law:@3{} @certain])
KIF: (forAllN 3 ’?l law (exists ((?js set) (?a approval))

(forAllIn ?js 4 ’?j judge (and (agent ?a ’?j) (object ?a ’?l)))))

PL: ∃ls set(ls) ∧ size(ls, 3) ∧ ∀l ∈ ls ∃js set(js) ∧ size(js, 4) ∧
∃a approval(a) ∀j ∈ js agent(a, j) ∧ object(a, l)

E: A group of 4 judges has approved a group of 3 laws.
FCG: [a set of 4 judges, agent of: (an approval,object:a set of 3 laws)]
or: [a set of 3 laws, object of: (an approval,agent:a set of 4 judges)]
or: [an approval, agent: a set of 4 judges, object: a set of 3 laws]

CGLF: [judge: Col{*}@4]<-(agent)<-[approval]->(object)->[law: Col{*}@3]
CGIF: (agent [approval: *a] [judge: @Col{}@4])

(object ?a [law: @Col{}@3 @certain])
KIF: (exists ((?a approval) (?js set) (?ls set))

(forAllIn ?js 4 ’?j judge (forAllIn ?ls 3 ’?l law
(and (agent ?a ’?j) (object ?a ’?l)))))

Knowledge Representation in CGLF, CGIF, KIF, Frame-CG 85

PL: ∃a approval(a) ∧ ∃js set(js) ∧ size(js, 4) ∧ ∃ls set(ls) ∧ size(ls, 3) ∧
∀j ∈ js ∀l ∈ ls agent(a, j) ∧ object(a, l)

Here is how we define the “quantifier” forAllIn.
(defrelation forAllIn (?s ?num ?var ?type ?predicate) :=

(and (size ?s ?num)
(truth ^(forall (,?var) (=> (member ,?var ,?s)

(and (,?type ,?var) ,?predicate))))))

In FE and FCG, the distributive interpretation is specified via the keyword
each. In CGLF, the keyword Dist is used. The CG standard does not address
this issue but allows @Dist in CGIF. If we introduce the collective interpretation
into the previous seven combinations, we obtain nine different logical interpre-
tations. Here are two of them.

E: 4 judges have each approved 3 laws.
FCG: [each of 4 judges, agent of: (an approval, object: 3 laws)]
CGLF: [judge: Dist{*}@4]<-(agent)<-[approval]->(object)->[law:{*}@3]
CGIF: (agent [approval:*a] [judge: @Dist{}@4]) (object ?a [law:{}@3])
KIF: (forAllN 4 ’?j judge (exists!! ’?j ’?ls set (forAllIn ’?ls 3 ’?l law

(exists!! ’?j ’?a approval (and (agent ’?a ’?j)(object ’?a ’?l))))))

PL: ∃js set(js) ∧ size(js, 4) ∧ ∀j ∈ js ∃!!ls set(ls) ∧ size(ls, 3) ∧
∀l ∈ ls ∃!!a approval(a)∧ agent(a, j) ∧ object(a, l)

E: 4 judges have each approved a group of 3 laws.
FCG: [each of 4 judges, agent of: (an approval,object: a set of 3 laws)]
CGLF: [judge:Dist{*}@4]<-(agent)<-[approval]->(object)->[law:Col{*}@3]
CGIF: (agent [approval:*a] [judge:@Dist{}@4]) (object ?a [law:@Col{}@3])
KIF: (forAllN 4 ’?j judge (exists!! ’?j ’?ls set (exists!! ’?j ’?a approval

(forAllIn ’?ls 3 ’?l law (and (agent ’?a ’?j) (object ’?a ’?l))))))

PL: ∃js set(js) ∧ size(js, 4) ∧ ∀j ∈ js ∃!!ls set(ls) ∧ size(ls, 3) ∧
∃!!a approval(a) ∀l ∈ ls agent(a, j) ∧ object(a, l)

Below is our KIF definition of exists!! (∃!!). This quantifier permits us to
specify that the judges are agent of different approvals and different laws (first
example above) or groups of laws (second example above).
(defrelation exists!! (?var1 ?var2 ?type ?predicate) :=

(truth ^(exists (,?var2)
(and (,?type ,?var2) (,?predicate ,?var1 ,?var2)

(forall (?x) (=> (,?predicate ,?var1 ?x) (= ,?var2 ?x)))
(forall (?y) (=> (,?predicate ?y ,?var2) (= ,?var1 ?y)))))))

Finally, we can introduce “most” as an interpretation of collectiveness in the
previous (7+9=16) combinations. Hence, 16 new logical interpretations. Here
is one.

E: A group of 3 laws has been approved by most in a group of 4 judges.
FCG: [a group of 4 judges, agent of:

(an approval, object: most in a group of 3 laws)]
or: [most in a group of 3 laws, object of:

(an approval, agent: a group of 4 judges)]
CGLF: [judge:Col{*}@4]<-(agent)<-[approval]->(object)->[law:Col{*}@3 @most]
CGIF: (agent [approval:*a] [judge:@Col{}@4])(object ?a [law:@Col{}@3 @most])
KIF: (exists ((?l approval) (?js set) (?ls set))

(forAllIn ?js 4 ’?j judge (forMostIn ?ls 3 ’?l law
(and (agent ?a ’?j) (object ?a ’?l)))))

86 Philippe Martin

PL: ∃a approval(a) ∧ ∃js set(js) ∧ size(js, 4) ∧ ∃ls set(ls) ∧ size(ls, 3) ∧
∀j ∈ js agent(a, j) ∧ ∃mostOfls set(mostOfls)

(∀l ∈ ls (object(a, l) => l ∈ mostOfls)) ∧ size(mostOfls) >= 2

// >= 2 since size(ls)/2 = 1.5

Here is how we define forMostIn (see Section 5 for numMembersSuchThat).

(defrelation forMostIn (?set ?num ?var ?type ?predicate) :=
(and (size ?set ?num)

(truth ^(forall (,?var) (=> (member ,?var ,?set) (,?type ,?var))))
(>= (numMembersSuchThat ,?set ,?predicate) (* (size ,?set) 0.60))))

8 Intervals

E: Tom has been running for 45 minutes to an hour.
FE: Tom is agent of a run with duration a period with part 45 to 60 minutes.
FCG: [Tom, agent of: (a run, duration: (a period, part: 45 to 60 minutes))]
CGLF:[run]- { (agent)->[Tom],

(duration)->[period]->(part)->[minute: Col{*}@45-60] }
CGIF:(agent [run *r] Tom) (duration ?r [period *d])

(part ?d [minute: @Col{}@45-60])
KIF: (exists ((?r run) (?p period) (?minutes set))

(and (agent ?r Tom) (duration ?r ?p)
(forAllInBetween ?minutes 45 60 ’?m minute (part ?p ’?m))))

Here is how we define forAllInBetween.

defrelation forAllInBetween (?s ?n1 ?n2 ?var ?type ?predicate) :=
(exists (?n) (and (size ?s ?n) (>= ?n ?n1) (=< ?n ?n2)

(truth ^(forall (,?var) (=> (member ,?var ,?s)
(and (,?type ,?var) ,?predicate))))))

In these CGLF and CGIF, the collective interpretation is specified for the
minutes so that the numerical quantifier has the lowest precedence. In FE and
FCG, the graph structure is sufficient to specify the scopes of the quantifiers.

In all these notations, a concept of type period had to be introduced since
the minutes participate in the same period/duration. This is the same problem
as for the collective participation to an act: the act cannot be represented as a
relation. Here, a relation of type duration cannot directly connect the run to
the minutes. We only became aware of this problem when trying to produce the
KIF representation.

9 Function Calls and Lists

Special syntactic sugar to distinguish functional relations from other relations
is not mandatory since this distinction can be specified in the relation type
declaration (hence, all notations permit function calls even if they do not permit
function definitions). However, a syntactical difference eases readablility and
syntactic checking. The next example involves two functions (length, +) and
one relation (<).

E: The length of the list "Tom, Joe, Jack" plus 1 is less than 5.
FE: length(LIST{Tom,Joe,Jack}) + 1 < 5.
FCG: [length(LIST{Tom,Joe,Jack}) + 1 < 5]

Knowledge Representation in CGLF, CGIF, KIF, Frame-CG 87

CGLF: [number:*x]<-<plus>- <-1- [number]<-<length><-[T: <Tom,Joe,Jack>],
<-2- [number:1]

[?x]->(superior)->[number:5]
CGIF: <length [T: <Tom,Joe,Jack>] *l> <plus ?l 1 [number]>
KIF: (superior (+ (length (listof Tom Joe Jack)) 1) 5)

Problem with the CGIF notation: the CG standard specifies that angular
brackets should be used to delimit lists but the CGIF grammar only accepts
curly brackets. Furthermore, length and plus are not in the CG standard, thus
leading people to use other identifiers and hence making knowledge comparison
difficult.

In FE and FCG, the notation for functional relations can also be used to
represent non-binary relations (in CGLF, CGIF and KIF, binary and non-binary
relations have a similar syntax; this does not lead the knowledge provider to use
binary relations only, and hence leads to less explicit and comparable state-
ments [6]).

10 Higher-Order Statements

First-order statements quantify over individuals. Higher-order statements also
quantify over types. For example, describing the transitivity of a particular re-
lation (e.g. “the part of a part is also a part”) can be a first-order statement,
but describing in general what a transitive relation is, requires a second-order
statement. Since definitions will be presented in the next section, the next ex-
ample does not define a type such as transitive_binary_relation but uses
the characteristic transitivity.

E: If a binary relation type rt is transitive
then if x is connected to y by a relation of type rt, and

y is connected to z by a relation of type rt,
then x is connected to z by a relation of type rt.

FE: If ‘a binaryRelationType ^rt has for chrc the transitivity’
then ‘if ‘^x has for ^rt ^y that has for ^rt ^z’

then ‘^x has for ^rt ^z’ ’. //rt,x,y,z are free variables
FCG: [[a binaryRelationType ^rt, chrc: the transitivity] =>

[[^x, ^rt: (^y, ^rt: ^z)] => [^x, ^rt: ^z]
]]

CGLF: [IF: [binaryRelationType: *rt]->(chrc)->[transitivity]
[THEN: [IF: [T: *x]->(&rt)->[T: *y]->(&rt)->[T: *z]

[THEN: [?x]->(&rt)->[?z]
]]]]

CGIF: [IF: (chrc [binaryRelationType *rt] [transitivity])
[THEN: [IF: (holds ?rt [T:*x] [T:*y]) (holds ?rt ?y [T:*z])

[THEN: (holds ?rt ?x ?y)
]]]]

KIF: (exists ((?t transitivity))
(forall ((?rt binaryRelationType) ?x ?y ?z)
(=> (chrc ?rt ?t)

(=> (and (holds ?rt ?x ?y)(holds ?rt ?y ?z)) (holds ?rt ?x ?z)))))

In CGLF, we used ’&’ to specify the mapping from the relation type rt to
a free variable referring to a relation of type rt. [Sowa, 1993] uses the greek
character ρ but this character is not easy to enter. An alternative would be to
keep the variable re-use prefix ’?’ since the location of the re-use (i.e. within
a relation) seems sufficient to highlight the special semantic. We adopted this
second solution in FE and FCG (in the example, ’ˆ’ is used instead of ’?’ or

88 Philippe Martin

’*’ because a free variable is used). In CGIF, since the current syntax does not
permit variables for relation types, we used a universal quantifier and the relation
type holds, as in KIF.

11 Declarations and Definitions

In RDF/XML, a category is uniquely identified by a URI, e.g. http://
www.foo.com and http://www.bar.com/doc.html#car. In a multi-user KBS
such as WebKB-2 [7], user identifiers are more convenient knowledge source
identifiers than document URIs. Thus, in WebKB-2, a category identifier can be
not only a URI or an e-mail address but also the concatenation of the knowledge
provider’s identifier and a key name, e.g. wn#dog and pm#IR_system (“wn” refers
to WordNet 1.7 and “pm” is the login name of the user represented by the cat-
egory philippe.martin@gu.edu.au). In this third case, the category may still
be referenced from outside the KB by prefixing the identifier with the URL of
the KB, e.g. http://www.webkb.org/kb/wn#dog.

This identifier encoding is used for all the input/output notations in WebKB-
2 (FCG, FE, KIF, CGIF, CGLF) except for RDF/XML where URIs have to be
used.

In addition to an identifier, a categorymay have various names (which may be
names of other categories). In FE and FCG, a category identifier may show all the
names given by its creator, e.g. wn#dog__domestic_dog__Canis_familiaris
(at least two underscores must be used to separate the names).

WebKB-2 proposes a special notation to declare categories and links (i.e.
second-order relations) between them: the “For Ontology” (FO)6 notation. It
is an extension of the special notation used in CGLF for specialization links
between categories. Hence, in the following example, we use FO instead of FE,
FCG and CGLF.

For the KIF representation, we chose to use relation types from RDF, RDFS
and DAML+OIL rather than from the Frame-ontology and OKBC-ontology of
the Ontolingua library, in order to ease the comparison with RDF/XML repre-
sentations.

For CGIF, we used special relation types (see identifiers in uppercase) and
hence extended the grammar because this is more in the spirit of the notation
(it is supposed to be of higher-level than KIF or RDF/XML and hence al-
ready incorporates many special categories such as EQ, GT and LT; such special
cases also ease semantic checking and inferencing). We used the same syntac-
tic sugar as in FO to delimit subtype partitions. More details on the rationales
and the grammar of our extensions to CGIF can be found on the WebKB site
(http://www.webkb.org/doc/CGIF.html).

FO: pm#thing__top_concept_type (^thing that is not a relation^) 29/11/1999
_ chose (oc fr), ^ rdfs#class, ! pm#relation, = sowa#T,
> {(pm#situation pm#entity)} pm#thing_playing_some_role;

6 http://www.webkb.org/doc/F languages.html#FO

Knowledge Representation in CGLF, CGIF, KIF, Frame-CG 89

CGIF: [TYPE: pm#thing *x ;thing that is not a relation;]
(CREATOR ?x philippe.martin@gu.edu.au) (CREATION_DATE ?x 29/11/1999)
(NAME ?x "thing") (NAME ?x "top_concept_type")
(NAME_BY_IN ?x "chose" Olivier.Corby@sophia.inria.fr wn#french)
(KIND ?x rdfs#class) (EXCL ?x pm#relation) (EQ ?x sowa#T)
(GT ?x {pm#situation pm#entity}) (GT ?x pm#thing_playing_some_role)

KIF: (defrelation pm#thing ()) (rdfs#class pm#thing)
(pm#name pm#thing "thing") (pm#name pm#thing "top_concept_type")
(pm#nameWithCreatorAndLanguage pm#thing "chose"

Olivier.Corby@sophia.inria.fr wn#french)
(dc#Creator pm#thing philippe.martin@gu.edu.au)
(dc#Date pm#thing "29/11/1999")
(rdfs#comment pm#thing "thing that is not a relation")
(daml#disjointWith pm#thing pm#relation) (= pm#thing sowa#T)
(daml#disjointUnionOf pm#thing ’(pm#situation pm#entity))
(rdfs#subClassOf pm#thing_playing_some_role pm#thing)

In FO, the creator of a link is left implicit when it is also the creator of
the category source of the link. Otherwise, the creator has to be specified (as
illustrated above for the name “chose”). To represent link creators in the other
notations, either contexts or relations with arity higher than two must be used
(as illustrated).

“SubtypeOf” links are special cases of definition of necessary conditions for
(being an instance of) the source categories. Here is an example of how more
general cases for the definition of necessary conditions can be represented.
E: A man (according to "pm") has necessarily for father a man.
FCG: [type pm#man (*x) :=> [*x, pm#father: a pm#man]]
CGLF: [TYPE: pm#man]->(LT)->[(lambda(*x) [?x]->(pm#father)->[pm#man])]
CGIF: (LT pm#man (lambda (T *x) (pm#father ?x [pm#man])))
KIF: (defrelation pm#man(?p) :=> (exists((?p2 pm#man)) (pm#father ?p ?p2)))

To define sufficient conditions, GT and :<= may be used instead of LT and
:=>. To define necessary and sufficient conditions, EQ and := may be used.

The CG standard is quite incoherent and restrictive about lambda-abstrac-
tions and type definitions. The above proposal (with GT, LT, EQ) is the closest
generalization we found. We took into account the possible need to contextualize
the definitions themselves: with the usual CGLF syntax for type definition with
necessary and sufficient conditions (as in: type pm#red_car is [pm#car]->
(pm#chrc)->[pm#red]), contextualization cannot be done (unless the grammar
is extended to accept such definitions as embedded graphs).

The CG standard does not specify how to define functional relations (actors),
just how to use them. The next example is adapted from [9]: we preferred to use
the IF construct rather than Sowa’s ternary relation < and quadrary relation
cond.
E: The length of a list is 0 if the list is empty,

otherwise, 1 + the length of the list without its first element
FCG: [function length (list *l) :-> natural *r

:= [if [l = nil] then [*r = 0] else [*r = 1 + length(rest(*l))]]]
CGLF: [function length (list *l, natural *n)

[IF: [?l]->(EQ)->[list:nil] [THEN: [?n]->(EQ)->[number:0]]
[ELSE: [?l]-><rest>->[list]-><length>->[natural]-><plus1>->[?n]]]

CGIF: [function length (list *l, natural *n)
[IF: (EQ ?l nil) [THEN: (EQ ?n [number:0])]
[ELSE: (rest ?l [list:*l2])(length ?l2 [natural:?n2])(plus1 ?n2 ?n)]

]]
KIF: (deffunction length (?l)

:= (if (= ?l nil) 0 (if (list ?l) (1+ (length (rest ?l))))))

90 Philippe Martin

KIF also has built-in operators (listOf, setOf) to assemble/decompose
lists and sets; e.g.: (deffunction first (?):= (if (= (listof ?x @items)
?l) ?x). CGLF and CGIF need to be extended with such operators.

12 Conclusion

We have shown how FE, FCG, CGLF and KIF can be used in various knowledge
representation cases, highlighted some problems of CGLF and CGIF for know-
ledge representation, exploitation and exchange, and proposed intuitive nota-
tions (FE, FCG and FO) covering at least all the presented cases. Although
these high-level notations are unlikely to be widely adopted, they show some
ways to improve CGIF, CGLF or other notations in readability, expressiveness
and “knowledge normalizing effect”. They also provide an alternative to graphic
notations such as CGDF which suffer from similar problems as CGLF plus the
need for specialized tools (graphic notations are not easy to mix and hyperlink
with text in documents).

Compared to FE, other controlled English notations are often less formal, e.g.
ClearTalk, but closer to English, e.g. Attempto Controlled English [5]. Hence,
they are easier to use but permit less (no functions, no categories from different
authors or ontologies, etc.) and interpret more. By allowing adjectives, adverbs
and verbs, they also do not lead the user to write more explicit and comparable
statements [6]. FE and FCG encourage the users to adopt the lexical and onto-
logical conventions that we proposed in [6] to improve knowledge representation
and sharing.

We are now working on the import and export of FE, FCG, CGLF, KIF and
RDF/XML in WebKB-2, along the lines presented in this article. More informa-
tion can be found, and testing can be done, at WebKB’s site (www.webkb.org).

References

1. The CG specification. http://users.bestweb.net/˜sowa/cg/cgstand.htm 77, 78, 79
2. The KIF specification. http://logic.stanford.edu/kif/dpans.html
See also: http://www-ksl.stanford.edu/knowledge-sharing/kif/ 77

3. The RDF specification. http://www.w3.org/TR/REC-rdf-syntax/ 78
4. The Knowledge Machine specification. http://www.cs.utexas.edu/users/
mfkb/km.html 78

5. Fuchs, N. E., Schwertel, U., Torge, S.: Controlled Natural Language Can Replace
First-Order Logic. In Proc. of ASE’99, 14th IEEE International Conference on
Automated Software Engineering, Cocoa Beach, Florida, 1999. 90

6. Martin, Ph.: Conventions and Notations for Knowledge Representation and Re-
trieval. In Proc. of ICCS 2000, 8th International Conference on Conceptual
Structures, Springer Verlag, LNAI 1867, Darmstadt, Germany (2000) 41–54.
http://www.webkb.org/doc/papers/iccs00/ See also the FE and FCG grammars
at http://www.webkb.org/doc/F languages.html 78, 79, 81, 87, 90

Knowledge Representation in CGLF, CGIF, KIF, Frame-CG 91

7. Martin, Ph., Eklund P.: Large-scale cooperatively-built heterogeneous KBs. In
Proc. of ICCS 2001, 9th International Conference on Conceptual Structures,
Springer Verlag, LNAI 2120, Stanford University, California (2001) 231–244.
http://www.webkb.org/doc/papers/iccs01/ 78, 88

8. Sowa, J. F.: Conceptual Graphs Summary. In: Nagle, Nagle, Gerholz, Eklund (eds):
Conceptual Structures: Current Research and Practice, Ellis Horwood (1992) 3–51.
78, 79, 83

9. Sowa, J. F.: Relating Diagrams to Logic. In Proc. of ICCS’93, Springer Verlag,
LNAI 699, Laval, Quebec (1993), 1–35. 78, 79, 89

	Knowledge Representation in CGLF, CGIF, KIF, Frame-CG and Formalized-English
	Introduction
	Conjunctive Existentially Quantified Statements
	Contextualization
	Universal Quantification
	Lambda Abstraction, Percentage, Possibility, Valuation
	Negations, Exclusions and Alternatives
	Collections and Quantifier Precedence
	Intervals
	Function Calls and Lists
	Higher-Order Statements
	Declarations and Definitions
	Conclusion

