Top-Level Ontology of Knowledge Sharing Criteria

Philippe A. MARTIN
ESIROI |.T., EA2525LIM, Uni. of LaRéunion, Sainte Clotilde, France
(+ adjunct researcher of the School of ICT, Griffith Uni., Australia)

Abstract. This article presents a generic model and a top-level ontology to
represent, organize and combine knowledge from various sources and, in
particular, best practices and quality criteria or measures for knowledge sharing.
These elements may then also be used by people to compare tools, techniques
and knowledge providers. One top-level distinction permitting to organize this
ontology is the one between content, medium and containers of descriptions.
Various structural, ontological, syntactical and lexical distinctions are then used.

K eywor ds: Knowledge Representation/Comparison/Organi zation/Evaluation

1 Introduction

How should data or knowledge be represented and published so it can be most easily
retrieved, re-used and managed? Then, how to compare or eval uate knowledge statements,
bases, management techniques, management tools and providers? To answer those
questions, many knowledge sharing/engineering supporting elements have been proposed:
approaches [1-2], languages [3-7], ontologies [8-13], methodologies [14-15], best practices
or design patterns [16-18], categories of evaluation criteria or measures [19-22],
evauation queries [23-25], benchmarks [26-27], techniques [28-xx], software [xx], €tc.
(Note to the reviewers: in this article, “xx” is used to preserve the anonymity congtraints).
However, it is difficult to compare these elements or their sub-elements, choose between
them, combine them or have a synthetic organized view of what can or should be done for
knowledge sharing purposes. Indeed, these dements often do not use similar
terminologies or categorizations and no ontology or library has been proposed to
compare, index, organize and generalize such eements (which are at various levels of
abstraction and may be contradictory). The top-level ontology presented in this articleisa
step in that direction. This article refers to it as “this knowledge criteria/quality ontology”
or smply “this (top-level) ontology”. It isfocused on elementsrelated to Linked Data[2].
As with any other ontology, the bigger and more organized it will become, the more
useful it will be for dl the previoudly cited tasks. (For the knowledge operationalization
tasks, bigger is no longer better but eases the sdection of knowledge for modules of
relevant sizes and content for an application; this article and its top-level ontology do not
really address this phase, only the knowledge sharing tasks.) This ontology is published
on-line via a knowledge server [xx] and can be cooperatively extended by any Web user
via this server. This server uses editing protocols and an abstract model alowing its
knowledge base (KB) to be consistent and organized even though knowledge statements
come from different sources and hence can contradict each other. The use of such amodel
can be seen as a “best practice” (for knowledge sharing). This abstract modd is aso

p.1

required for organizing the various previoudy cited elements of the top-level ontology ina
scalable way and allow their combination by the usersin aflexible way. Hence, thisarticle
presents thismodel and introduces its recently formalization version in Section 2.

Since “better” is often application-dependent and user-dependent, this ontology does
not use “better” relations between its elements. However, Section 2 show how “default
rules’ can ease the definition and aggregations of such relations by users. Relations such
as “(has for) more precision” can be exploited by end-users functions for measuring or
comparing the qudity of elements. This ontology does not use specialization or “part of”
relations to organize knowledge management tools and techniques (e.g., for knowledge
extraction, retrieval, matching, merging, representation, inferencing, validation, edition,
annotation, modularization and publishing). Indeed, this would be a huge task and,
especialy at a genera level, these processes are so intertwined that they are difficult to
distinguish and organize in a scalable way, i.e, in a systematic and non-arbitrary way
within a specidization hierarchy and a part-of hierarchy. Here, “non-arbitrary” impliesthe
use of conceptual distinctions that are clear enough to lead different persons to categorize
a same thing at a same place in a specidization/part-of hierarchy (note: a hierarchy does
not have to be atree); this significantly reducesimplicit redundancies[14].

A dear top-level partition of information objects is the distinction between description-
content, description-medium and description-container objects. Description-content objects
are conceptud categories, as well as forma/informa terms or statements referring to or
defining these categories. They are interpretations or dodtractions of a (red or imaginary)
Stuation or object. E.g.: abdract models, ontologies, terminologies, languages and any of
their sub-dements (e.g., the concept/relation types of RDF and OWL). Description-
medium objects are concrete model objects permitting to visudly/oraly/... present
description-content objects. E.g.: graphical interface objects and syntax/style objects such as
those specified by XML, CSS and XSLT. Description-container objects are the other
information objects, i.e.,, non-physical objects permitting to store and manage description-
content and description-medium objects. E.g.: files, file repositories, distributed databases
and file servers. Since the knowledge quality ontology of this article is about information
objects, the above partition is at its top. Then, knowledge management tools and techniques
can be compared and evaluated with respect to (wrt) the qualities of the information objects
that they alow as input and output, or lead their users to produce. Similarly, knowledge
providers can be evaluated based on the information objects they have provided. Section 2
illugtrates the way quality messures and their combination can be specified incrementally.
The sections 3, 4 and 5 are respectively about the evaluation of description-content,
description-medium and description-container. These sections relate, organize and
generdize knowledge sharing best practices and quality criteria or measures from various
sources. Some categories from each of the above referred artides are included in the
ontology. [17-22] include the most complete lists of high-level categories that seemed to
exig so far for Linked Data. All their categories are integrated in the ontology. The various
sources sometimes had categorizations. Section 6 shows those of the four most organized
sources that seemed to exist for Linked Data so far. However, these categorizations are
essentidly only two levels deep and not aways intuitive. Additiona categorizations would
beinteresting, especidly if they are clear-cut (then, the more categories, the better).

p. 2

2 A Formal Basefor Flexible Knowledge Sharing and Comparison

The model proposed by this article relies on the mode of KIF 3.0 [5], a LISP-based
relatively intuitive first-order-logic language that became popular for formalizing and
trandating knowledge representation languages (KRLS) and ontologies. The used KIF
syntax is the one of KIF 3.0 plus the new constructs introduced by dpANS KIF [6]. The
modd and syntax of KIF (Knowledge Interchange Format) were respectively mostly
reused by the Common Logic standard and its CLIF notation [7] but without features for
specifying meta-statements, definitions and (monotonic or not) inference rules. Firgt-
order statements and some 2m-order-looking ones can be expressed in KIF, and hence all
statements that can be expressed with the W3C KRLs (RDF+OWL/XML, N3, RIF, ...).

With this model, a KB is a set of statements which are partid/complete definitions,
sentences or rules [5]. Statements use terms (called “congtants’ in KIF; they refer to
conceptual categories). Definitions are descriptions which may be said to be * neither true nor
fdse” or “adways true by definition”. Non-conservetive definitions are those which may
introduce an incongstency when added to the KB (like sentences which are “commands’
but not information retrieva queries). The modd used in this article considers them as
shortcuts for a definition plus a sentence. Thus, more precisdly, it consders a statement as
ather a (conservative) definition, a belief or a command (rule or sentence that is not a
belief). A belief isasentence that has a meta-statement indicating its source: authoring agent,
interpreter or source KB. If an authoring agent is specified, it is assumed that he believesthe
embedded statement. A belief may be false (purposdly if its authoring agent li€) and hence,
unlike a definition, can be contradicted by the belief of another source. However, this does
not lead to a (logica) inconsistency in the KB: a sentence stating that someone believes
something is not inconsistent with a sentence gating that someone else bdieves something
oppodite. If asame person sates opposite beliefs, there is a (detected or not) inconsggtency in
the KB (if the periods of the beliefs are represented, another condition is that these periods
overlap). A meta-statement contextualizes a statement if it adds “contextualizing relations’
to it, that is, congraints without which the statement may be fase. Only a bdi€f, not a
definition, can be used to express that a particular meaning is the most popular meaning of
aninformal term (i.e., aword with more than one meaning) in a certain community. A query
and a KB policy can be represented as definitions. They can dso be represented as
commands, hence stated in away that may lead to inconsistencies.

In a shared KB, terms and statements may come from various sources. The KB
must be consistent and have a KB consistency/organization policy. Thus, except for
queries and statements expressing this policy, a shared KB management system
(KBMS) must only accept statements and terms that are “contextualized by their
sources’. For terms, thisisalexical contextualization, e.g., viatheir prefixing by an
identifier of the source, as with xsd:float (with the XML namespace shortcut) and
http://url_identifying_the_sourcefterm_identifier_in_the source namespace. For
statements, this may be done by using different description containers for different
sources. However, the source or other contextualizing information about the
contained statements still needs to be represented. The direct use of meta-statements
is more flexible. The source of a definition needs not be made explicit if this source
is the same as the source of the defined term. Otherwise, it must be made explicit:
this is not a definition but actually a belief since this is an assumption of someone
about what the source of the term means via this term. A shared KB must then have

p.3

a type such as xx:contextualizing_relation, with various subtypes to list and
organize such relations, e.g., “belief source” relations and temporal or modal
relations on the represented situation. “Statement creation date” relations are also
required by cooperation protocols and quality measures but are not contextualizing.

For convenience and security purposes, a KBMS should not ask or accept a user to
specify “source users’ and creation dates for the beliefs he adds or imports into the KB.
If these beliefs are not yet recorded, this user istheir “source user” and first believer. A
“source document” may also be recorded. The KBM'S may impose or encourage users not
to enter certain kinds of statements, those that do not satisfy certain qudity criteria
s ected by the KBMS authors or by the users (to have the KBMS help them creste more
re-usable statements). Creation dates are added by the KBM S when accepting statements.

The above summarized model is formalism independent. However, it has been
formalized in KIF (note added on the 23/05/2013: the core of this formalization is at
http://www.webkb.org/kb/it/d KSmodd.html). The following excerpts are i) the top
function allowing the KBMS to validate a statement according to the above mode, ii)
the top relation for handling contextudizations (‘%' is the chosen ending for source
prefixes within terms; "' and '# have other meanings in KIF), iii) the top function for
dividing a statement into its “atomic substatements’, i.e., statements that cannot be
divided into “contextualized AND-clauses’ (indeed, no (sub-)statement should be
handled without its contextuaization), iv) away to represent “default rules’ and v) a
way for the KBMS to express who the current end-user is. Except for operators, all
identifiers are nominal expressions (this is a best practice later listed). For a “concept
type” (“unary relation” in KIF, “class’ in RDF), the initial isin uppercase. For a “relation
type”’ (“function” or “non-unary relation” in KIF, instance of rdf:Property if it is binary),
theinitia isin lowercase. Termswithout prefix are KIF terms.

;:During the parsing of a new statement ,knowing its asserter and the date, the KBMS should
;;call the next defined function on this statement to check the statement wrt the KBMS policy
;;and the criteria selected by the (end-)user. The user's statements must be represented via
71 either xiddef rel, xxddef fct rel, xx¥def fct or any subtype of the relation type xx2source.
::;This next function inserts the statement into the KB if the checks were ok.
(xx¥def fct ;;xx¥def fct defines a functional relation (if the relation is binary, it is an
;+ instance of owl:FunctionalProperty and the function is unary)
xx%assertion by (?asserter ?assertion date ?belief or def) :—> ?assertion =>
(exist ((?dated assertion) (?is assertable)) ;sreturns nil if no assertion
(and (= ?dated assertion
(if (not (xx%valid sentence ?belief or def)) nil
(if (or (= ?assertion date nil) (xx%Definition ?belief or def)) ?belief or def
(listof "(xx%assertion date ,?belief or def ,?assertion date)))))
(= ?is_assertable
(and (/= 2dated assertion nil)
(forall ((?list of bad kinds of statement) (?bad kind of statement))
(and (xx%kinds of statement this agent has cammitted not to assert
?asserter ?list of bad kinds of statement)
(item ?list of bad kinds of statement ?bad kind of statement)
(not (holds ?bad kind of statement ?dated assertion))))))
(=> ?is assertable ;;holds must be used when the predicate/relation is a variable
(and (wtr ?dated assertion) ;;wtr: weakly true (asserts if no paradox created)
(= ?asserted belief ?dated assertion)))
(= ?assertion (if (not ?is assertable) nil ?dated assertion)))))

p. 4

(xxtdef rel xx%Contextualizing relation (?r) := j;e.g.: (xx®¥source '(xx3City xx%Paris) xx)
(and (relation ?r) ;;actually (xx?Relation on a sentence ?r) but this is redundant here
(forall ((Rargs)(?se))
(=> (holds ?r Qargs)
(exists ((?s sentence)) (and (xx®item (listof @args) ?s) (wtr 2s)))))))

(xx%def fct xx%atamic substatements (?sentence) := ; ;returns contextualized AND-clauses
(if (not (list ?sentence)) (listof ?sentence)
(if (= 'and (first ?sentence)) (map xx%atamic substatements (rest ?sentence))
(if (x¢%¥Non contextualizing relation on a sentence (first ?sentence))
(aprend (listof ?sentence) (map first (map xx2atamic substatements ?sentence)))
(mep first (mep xx%atamic substatements ?sentence))))))

; ;KIF permits to represent "default rules" (and thereby non-monotonicity and the "closed
;sworld assumption") via the use of "=>>" (instead of "=>") and "(consis ?s)" (meaning
;:"as long as ?s is consistent with the current rest of the KB"); see the examples next page
(xx%def rel xxidefault truth (?sentence) := (wtr "(=>> (consis ,?sentence) ,?sentence)))

(xx¥cef rel xxi¥End-user (2u) :=> (xx¥gent ?u)) ;;e.g.: (XXXEnd-user xx)

Called by xx%assertion_by, the function xx%valid_sentence returns its parameter if
it is a well-formed definition or a belief that does not “implicitly contradict” other
statements from the same asserter. A belief implicitly contradicts another one when
i) they are inconsistent if their contextualizations by their sources are removed, and
i) this inconsistency is not explicitly represented by a relation of type xx%correction
from one of the statement to the other one. Some subtypes of xx%correction are
xx%corrective_specialization and xx%corrective_generalization. Thus, for example, if
an agent has entered his belief that “all birds fly”, the KBMS should then not alow him
to assert that he believes that “in 2012, between 50% and 75% of Australian birds can
fly”, unless the newer statement aso asserts that this new belief corrects the earlier one.
With this last example, the KBMS may also detect that the new belief specidizesthe first
and thus may require the use of arelation of type xx%corrective_specialization.

Depending on the KBMS policy, additional congtraints may be checked via the last
above cited function or the list returned by the function xx%kinds of statement_this
agent_has_committed not_to_assert. For the KB to be what can be caled “a least
minimaly well-organized”, the above proposed “ no entering of implicit contradiction”
policy should be extended to also i) take into account beliefs from all sources, not just
those from the same source, and i) prevent the entering of redundancies. The resulting
KB organization may then be exploited for automatically choosing between contradictory
beliefs. E.g., an agent may specify that, by default, he believes the most speciaized
corrections from certain kinds of agents. This organization a so leads knowledge providers
to precise their knowledge objects, thus not forcing other agents to second-guess them.

Some additional definitions and default rules are necessary to help each agent specify
in a flexible way what he believes in, his quality measures, his notions of “better” for or
between various kinds of objects, and how these measures should combine. The flexibility
comes from the complex but automatic selections, combinations and overrides alowed by
the writing of many simple default rules. For them to work well, the beliefs of the users
should not be implicitly contradictory. The next examples show i) arelation to test the
non-contradiction of a user's beliefs, i) away for the KBMS to start making inferences
on the beiefs of the end-user by stating that they are true without their contextualization
by their source, iii) adefinition and then arule for the KBMS to state that by default al

p.5

agents believe anything as long as they have no reason not to, iv) a definition and then a
rule to state that by default, when an agent appears to believe in xx%correction relations
between statements, he bdieves only the most corrected statement, v) a definition to
express that an object is“superior to another one for a certain characteritic” if and only if
there is a greater-than relationship between the respective recorded vaues for this
characterigtic, vi) a rule stating that by default “being superior to another object on a
certain characterigtic” is being “better than this object for this characterigtic” (this rule
relies on a particular normalization of the representations), and vii) adefinition and then a
ruleto state that by default, if an object is“ better than another onefor al itsrelaions’, it is
“better than this other object”. Any user can override these rules by stating his belief in
more speciaized (or more general) default rules. If definitions were used instead of default
rules, the possibilities of overrides and unforeseen combinations would be reduced. These
examples of default rules give an idea of what the modd permits but are not part of it
sinceaKBMS can choose other defaullt rules.

Via the combination of such rules, object comparisons (via relations such as
xx%better_for or xx%superior_for) or evaluations (via numerical values) can be derived
from simpler ones. E.g., a function to evaluate the quality of a knowledge management
technique can be based on the quality of each input and output that the technique allows.
Similarly, the evaluation of tools and knowledge providers can be based on the quality
of their knowledge and provided/authored techniques. The current research works on
knowledge quality measures (eg., [17-18] [22-25]; see the next sections) focus on
providing simple measures, not on easing their design and combination.

(xx¥def rel xx%Believer of a consistent set of beliefs (?agent) :=
(consis (forall ((?s sentence)) (= (xx%believer ?s ?agent) (wtr ?s)))))

(forall ((?a xx%agent))
(= (oREnd-user ?a) (xokdefault truth “(forall ((?s)) (=> (xobeliever ?s ?a) (wtr ?s))))))

(xx3def rel xx%credulous (?agent) := ;;believes anything as long as he has no reason not to
(forall ((?s)) (xx%default truth "(xx%believer (xx%atamic substatements ,?s) ,?agent))))

(forall ((?agent xx%agent)) (xx¥default truth "(xx%credulous ,?agent)))

(xx%def rel xx¥believer of the most corrected version (?agent) := (forall ((?sl) (?s2))
(xx¥default truth (and (xx%believer " (xx3correction ,?sl ,?s2) ,?agent)
(not (xx3believer ,?sl ,?agent)) (xx%believer ?s2 ,?agent)))))
;3=> if there is a hierarchy of corrections, only the most corrected is finally believed

(forall ((?a xx®agent) (xx¥default truth "(xx¥believer of the most corrected version ,?a)))

(xx%def rel xx%¥superior for (?chrc ?o0l ?02) := ;;e.g.: (xx¥superior for precision RDF OWL)
(forall ((?vl) (?v2)) (= (and (holds ?chrc ?0l ?vl) (holds ?chrc 202 ?v2))
(< 2vl 2v2))))

(forall ((?a xx%agent) (?chrc) (?0l) (?02)) (xx¥default truth
' (x@believer ' (=> (xx¥superior for 2chrc 2ol ?02) (xx%better for 2chrc 2ol ?02)) ?a)))

(xx%def rel =xx%better for all relations (20l 202) :=
(forall ((?rel)) (xx¥better for ?rel 20l 202)))

(forall ((?a xx%agent) (?chrc) (?0l) (?02))
(xx¥default truth '(=> (xx%better for all relations ?o0l ?02) (xx¥better 7ol ?02))))

p. 6

3 Description Content Quality

The god of the top-level ontology presented in the remaining sections is to organize the
main kinds of methodological elements, best practices, quality characteristics (e.g.,
evaluation criteria, quality dimensions, the “data quality indicators’ of [22], ...) and
qudity measures (e.g., the “scoring functions’” and “assessment metrics’ of [22], ...) that
have been proposed for knowledge sharing purposes. This article only shows important
elements of a subtype hierarchy of quality measuring functions on information objects,
with the function result being a value (typically, numerical or boolean). Indeed, relations
can then be derived from boolean functions (the next page includes an example) and,
from this subtype hierarchy, other ones can be derived, eg., the one for quality
characteristics and the one for “ statements that have a certain (kind of) quality measure”
(dias, “statements that follow a certain (kind of) best practice”). Thislast hierarchy may
be proposed to users for them to select “kinds of statements they commit not to assert”.
There are many ways to categorize quality evauations, eg., according to what kind of
object they evauate, and whether or not they take into account certain lexical, structurd or
semantic best practices. The next indented list shows oneintuitive top-level categorization.
In al such indented lists below, the XML namespace shortcut is used but “xx:” is left
implicit. “LDpattern:” is for [18], “LD:” for [20], “SF:” for [21] and “PD:” for [22]. C+
+/Javerlike comments are used. Relation identifiers use nomina expressions and follow
the common “graph reading convention”, i.e., the last argument is the destination of the
reation; thus, a binary relation R(X,Y) can be read “<X> has for <R> <Y>". For
functional relations, thelast argument is the function result.
quality //function on an object with possibly other arguments; returns a value
content based quality //at least based on the dbject content

meta-statement based quality //at least based on a meta-statement on the dbject
rating based quality //at least based on meta-statements that are ratings

For each kind of evauated source object, there are various ways to categorize
i) functions that evaluate certain aspects of this kind of objects, ii) functions that
evauate “related objects’, and iii) functions that differently aggregate the values returned
by these functions. Hence the following subtypes for xx:description_content_quality:
description-content quality //subtype of the above function xx:quality
correctness //one main kind of description-content quality; the next page gives subtypes
conformity //another main kind; the page after the next one gives same important subtypes
quality of this description content //to evaluate the source dbject on all its criteria
d&scrlptlon content quality of this description content //content-related aggregations
quality of the description r rredla related to this description content
quality ¢ of the description containers 1 J:elated to this description content
Here, “related” refersto actual or potential/allowed relations. E.g., RDF (a description
content) allows various kinds of textua or graphical notations (description media) — some
being standards, some not — even if most RDF-based tools (description containers) only
work with RDF/XML. Thus, some evaluation functions may better rate an RDF-based
tool that can handle more notations, for example by calling external trandation toals.
One handy partition for the description-content semantic-quality functions is the
distinction between those that give “correctness’ vaues for the evaluated object and
those checking that it includes certain things. Here are some subtypes for the first kind.

p.7

correctness //of the evaluated object (statement or term referring to a statement)
LD:accuracy //factual correctness of a statement (which should be a belief) wrt the world
consistency //reports all or sare inconsistencies and implicit contradictions
consistency of this statement wrt this one (ST,ST —> boolean) //this signature states
//that this function is boolean and has exactly 2 statements as arguments;
//one relation derivable fram it is: xx:statement consistent with this one (ST,ST)
consistency and non-redundancy of this statement wrt this one "/ /inherited signature
consistency of this KB (ST —> boolean)
oonsmtency of t the RDF KB
consistency ¢ of SKOS relations //the measures of [24] are subtypes of this type
consistency of an } RDF KB tested via a SPARQL query //as in [23] and [25]
1D: mtemal_cons:.stency_fct ~//sF: consmtency_fct seems to be an alias
ID:modeling correctness fct //tests if the “logical structure of the data is correct”
//1D and SF do not precise if these last 2 types are dimensions or functions; this
// is why “ fct” is added here; other relations and dimensions can be derived
substatements of this st statement inconsistent with this 2nd one (ST,ST —> set)
consistency ratio //no restriction on the arguments but the result is a mumber (ratio)
consistency ratio of such a statement in this statement (ST,ST —> number)
consistency ratio of all atamic substatements in this statement (ST —> number)
ccms1stency_ratlo_of_thls_KB (SI‘ - nurrber)
consistency ratio of relations on this term in this statement (term -> number)
consistency ratio ¢ of this relatlon on 1 this te]:m in 1 this _statement (ST, term —> nurber)
PD:consistency //“muber of non—conflicting frames” divided by “mmber of frames”

All current quality messures related to Linked Data seem to use the whole KB (data
set) asimplicit argument (this eases their use but thisis aloss of generality) and most only
work on “frames’ (“objects’ in object-oriented approaches), i.e, on relations from aterm.
They do not work on any kind of statement. The above hierarchy shows how different but
related eval uation functions and relations can be organized and generdlized. Concept types
can be derived too. An important one is xx:Statement_consistent and_non-redundant_
with_any_other_one in_the KB since if a KBMS checks that each statement is of this
type before inserting it into the KB, this one will be “at least minimally well-organized”.
Asshown in Section 2, this eases or permits complex evaluations. The above functions are
relaively easy towriteinKIF. E.g.:

(xx3def fct xx%consistency ratio of such a statement in this statement (?sl ?s2)
;:as in all evaluation functions, the first argument is the evaluated dbject

(div (xx¥cardinality (setofall ?s (and (xx%substatement ?s2 ?s) (=> ?s ?sl)

(not (=> 2s2 (not ?s))))))
(xx¥cardinality (xx%substatements ?s2)))) ;3?2 may be a whole KB

The next page organizes functions checking that within an object certain elements exist
and are conform to a certain pattern. The various subtypes are semanticaly close. Thefirst
presented subtype can be re-used to write the other ones. This specidization hierarchy
shows that the current categorizations for Linked Data quality criteria and measures only
cover particular cases. Thus, the current implementations of (some of) these measures also
only cover particular cases. [23] and [25] proposes such implementations via SPARQL
queries and SPIN rules. To save space, there is no repetition of typesin this hierarchy (this
applies in the next hierarchies too). Some of the types could clearly also appear at other
places. The comments give some explanations for each of the types. The ones in bold
and/or italics are the most important for categorization or re-use purposes.

p. 8

conformity //reports on the existence/number of certain things/patterns
conformity of this statement wrt this requirement (ST,ST -> boolean)
ratio of conformity to this requirement in this statement (ST,ST —> number)
ratio of conformity of the KB //no restriction on the arguments
ID:modeling granularity (-> number) //no argument
PD:structuredness //e.g., PD:coverage (number of objects with all relations of a schema)
//and PD:coherence (average of coverage for all terms)

PD:carpleteness //alias, ID:campleteness (do all required terms/relations exist?)
PD:intensional carpleteness //ratio (percentage) of required relations in the KB
PD:extensional campleteness //ratio of required temms in the KB
PD:IDS Carpleteness //ratio of terms with a certain relation (property) in the KB

PD:relevancy //alias ID:Boundedness, ratio of relevant data for an application

PD:verifiability //existence of information to check for correctness; subtype examples:
//PD:traceability, PD:provability, PD:accountability; the following best practices are
//related to these subtypes: “providing another KB for tools that cannot perform
//camplex inferences” (IDpattern:materializing inferences) and “transforming the KB to
//conform to same models” (LDpattern:transformation query)

SF:validity //mo syntax errors, ..; very related to PD:verifiability; PD:validity is a subtype
SF:amount of data //this function too is a genuine “function subtype” of xx:conformity
representation quality
organization //e.g., an “at least minimal” one, another one for informal dbjects too, ...
reachability //of the evaluated object (PD:reachability when it is a whole KB)
out-relations //fram the doject; for a whole KB: PD:external links, PD:outdegree,
//the more, the better: this is Berners-Iee's 4™ basic rule for Linked Data [2];
//the more widely known/deployed the target cbjects, the better
in-relations //to the dbject; for a KB: PD:indegree, PD:LDSInDegreeReachability, ..
non-redundancy //e.g., PD:conciseness, PD:intensional conciseness, ..
expressiveness_econamy //avoidance of expressive constructs when this does not
//bias knowledge representation and reduce knowledge matching/inferencing/readability
modeling uniformity //e.g., checks same lexical/structural/ontological conventions
ID:directionality //checks the consistency in the direction of relations
use of the graph-oriented reading convention //also very important for readability
confomuty to_an abstract model or._ontology or methodology
conform to ¢ Ontoclean //checks that the object (or each of its sub-objects) is
//instance of the Ontoclean 2nd-order types: (semi/anti/totally)rigid thing, ..
use of a standard model //3™ basic rule for Linked Data for abstract models only
q:al:.ty of the repz'esentatmn of terms
1dent1f1catlon_by_properly_fom1ed_URIs //checks that objects are identified by
//HTTP URTs that can be dereferenced (by agents to find further information; the
//first 2 rules of Linked Data [2]; [18] specializes these best practices)
following of naming conventions //use of nouns, of a loss-less naming style,
ID:referential correspondence //consistency and non-redundancy of identifiers
ID:typing //checks that nodes are first-order typed entities, not just strings,
// hence checks the “Link Not Label” best practice [18]
PD:vocabulary understandability //checks that terms have human readable labels, ..
ID:intelligibility //alias SF:camprehensibility? They seem to be only about terms
PD: internationalization understandability //checks that the language is specified
quality of existing or derivable relations
use of binary relations only //since this helps knowledge matching and precision
quality of existing or derivable meta-statements //hence relations fram statements
quality of existing or derivable contexts //temporal/spatial/modal/...
provenance //checks the sources (agents/files) are represented (ID:Attribution)
//and the creation dates too (LD:History); ID:Authoritative is for
//checking if the author is a credible authority on the subject
loss-less_integration //checks that the semantics of source objects was not changed
PD:timeliness //alias SF:timeliness and ID:Currency; is the object is up-to-date?
//E.g., PD:newness (timely creation) and PD:freshness (timely update)
SF:licensing //alias, ID:licensed; to check for an open license, use PD:openness
security //checks for signatures, encryption, maintainability (LD:sustainable), ..

p.9

4 Description Medium Quality

Description-medium quality functions evaluate the textua/graphic/... presentation of some
description content objects in some description containers. The more structured,
“digtinguished from content” and adaptable by the end-users these media are, the better.
There are some tools for adapting the “classic presentation aspects’ (fonts, forms, ...) of
knowledge objects — via the use of CSS or XSLT [28] — but not the (input and output)
notations themsdlves. Here is a specialization hierarchy for description-medium quality
evaluating functions. The general comments on the previous hierarchies also apply here.

description-medium quality //subtype of the function xx:quality
quality of this description medium //to evaluate the source dbject on all its criteria
description medium quality of this description medium //medium-related aggregations
quality of the description ¢ conrtent related to this description medium
quality of the description ¢ conta;mars related to description medium
use ofstandard formats //for used KRLs (ROF/XML, ..), character encodings, graphics (SVG, ..),
(seew3 org), this is the 3™ Linked Data [2] basic rule but for concrete models only
use ¢ of structured formats //e.g., an HIML presentation (possibly with RDFa statements)
use ¢ of formats d.tst.mguzshmgstnxctuze > fram presentation //like XML except that it
//doesmtpernu_tltsuserstoadaptltsmtatlonwathesetmgofsarevalu&s
use of notations that can be adapted by the user //unlike XML and almost all notations
use of machine-understandable-formats
use_of_fonnat's_ﬂqat_have_an_mterpretation_in_sare_logic
PD:format _interpretability //aggregation on qualities of formats proposed by a KB
PD:human and machine interpretability //N3 is more easily read than RDF/XML
format ¢ structural _quality //e.g., SF:Versatility
fonmt_abstract—e:qamss:.veness //the expressiveness of its abstract model
//(— predicate logic, first-order logic, ..), kinds of possible quantification
//(note: KIF allows to define all kinds of relations to represent mumerical
// quantifiers but has no predefined keywords for them; thus, numerical quantifiers
//defined by different users will be hard to match (especially via sinple
//graph-matching based techniques; hence, KIF is expressive but low-level
syntactic expressiveness //the higher the result, the higher-level the notation
//can be considered (for the selected criteria), i.e., the more flexible and
//readable the format is, the more normalized/uniform the descriptions are,
//and hence the easier to campare via graph-matching these descriptions are
syntactic _constructs for_logical ones //e.g., are there keywords for mmerical
//quantifiers (and for which kinds, e.g., “58%", “2 to 6”) in the format
syntactic _constructs for_creating shortcuts //kinds of lambda-abstractions, ..
syntactic_constructs ; for - ontological primitives //e.g., for type partitions and
//primitives such as those in Ontoclesn and extensions of them. They are needed
//for knowledge engineering [3]. RDF is low-level: it has no keywords for them
//but can import a language ontology which has them
referable first-order-entities //e.g., what can be a 1¥-order entity, i.e.,
//what can be referred to via a variable in the notation: concept nodes,
//relation nodes, quantifiers, ..; the more things can be 1%-order entities
//(and hence that can be related to other things, annotated, selected via a
//mouse, ..), the better, and the more freely and formally related, the better
//for structuring/amnotation flexibility purposes; fram that viewpoint, an
//interface/notation for a KB may be better than one for a database or a
//structured document (which is then also better than an unstructured one)
format_concision //e.g., N3 is more concise than RDF/XML
format_uniformity //reports on the extent to which similar things can be (re)presented in
//similar ways (fram a software viewpoint and/or fram a person viewpoint)
SF:Uniformity //xx:format uniformity for a whole KB
performance of this format for this task (description medium, task —> value)

p. 10

5 Description Container Quality

Description-containers quality functions evaluate the way a given description container
(stetic file, distributed or not KB server) modularizes, stores, makes retrievable and
accessible (i.e., how it “publishes’) description content objects and checks or alows
updates or queries on them. Compared to the independent and direct use of static files
(e.g., RDF files), the use of knowledge servers by people eases knowledge modeling
and reduces the implicit inconsistencies and redundancies between their knowledge
satements. A server can aso use static input/output files and offers much more
flexibility than static files. It can also provide more services than those of a description-
container (e.g., it can forward queries). This can be taken into account for evaluating its
quality. Here is a speciaization hierarchy for description-container quality evaluating
functions. The general comments on the previous hierarchies still apply.

description-container quality //subtype of the function xx:quality
quality of this description container //to evaluate the source object on all its criteria
d&scrlptlon container quality of this description container //sub-quality aggregation
quahtyofﬂ]edescrlptjpncontaltrelatedtoﬂusdescrlptjmcontamer
quality of the description media related to description container
quality of the processes supported by this description container
storage 1 related] quality
maximal size of the KB
container ! based modularization
static ¢ contamer based modularization //static file based modules/versions/..
dynatm.c container } based modularization //forwarding of knowledge/queries ammgst KBs
ID:connectedness //checks if carbined datasets join at the right points
assertion related quality //what can be added or updated, by wham, in which language, ..
ontological flexibility //is the ontology fixed, i.e., is the KB actually a database?
IDpattern:annotation //are third-party resources accepted?
IDpattern:progressive enrichment //ways data (model) can be improved over time
checking possibilities //what kinds of inconsistencies or redundancies can be detected?
//does the server advocate best practices to its users?
information retrieval related quality //on the whole KB or n sare of its statements
published or._given metadata //on the KB or a art of it, e.g.,
//via just a “topic” (Ldpattern:Document Type), via the use of a semantic sitemap [11]
//via voiD (Vocabulary of Interlinked Datasets) [12], via DCAT [13], via metadata given
//for any doject (if a user requests it) but calculated in a predefined way (as with
//"Concise Bounded Descriptions”) [2], or via metadata accessible via powerful queries
abject accessibility
PD:accessibility //access methods, e.g., via SPARQL, an API, a file (HIML,RDF)
PD:availability //percentage of time a given service is "up"
SF:performance //low latency, high throughput, only minor “performance variations” ,
PD:response time //e.g., for static access and SPARQL access
PD:robustness //average of performance over time; caching data and using
// 1Dpattern:parallel loading help performance
querying possibilities //what can be queried, with which input/ouput languages,
//vhat privacy techniques are used, are the results ranked, filtered and merged, ...
interface personalization //to which extent can the input/output presentation be adapted
//by end-users and can take into account their constraints: language, disabilities,
//access fram various devices (mobile ones, ..), fram various software (browsers, ..), ..

p. 11

6 Some Other Categorizations

In order to show how this knowledge criteria/lquality ontology extends, generalizes and
organizes the elements of its sources, the next indented lists show the structure of the
four most organized sources that so far seemed to exist for Linked Data, even though
they are essentially only two levels deep. “SF” is for [21], “Kahn" is for [19],
“LDpattern:” is for [18] and “OPD:” is for [17] (this last source has three 3-level deep
categories and one 4-level deep category). The first two sources are for quality criteria,
the last two are for best practices. Their categories — the ones shown below — seemto be
concept types. To permit a maximd integration of the various sources, they have been
integrated into this quality ontology via function types, as illustrated by the previous
indented lists. From these functions hierarchies, the concept types hierarchies can be
generated. In the following lists, the lowermost categories are given within comments
and without prefix for their source. The lowermost “OPD” subtypes have severa
instancesin the OPD library.

SF:Quality criterion //this is the categorization that is closest to the decamposition
//according to description content/medium/container
SF:Content //Consistency, Timeliness, Verifiability
SF:Representation //Uniformity, Versatility, Camprehensibility
//mixes criteria on description medium and description container
SF:Usage //Validity of documents, Amount ofData, Licencing
//mixes criteria on description content and description container
SF:System //Accessibility, Performance

Kahn:Quality dimension //these are “the 15 most important ones fram consumer perspective”
Kahn:Intrinsic //Believability, Accuracy, Objectivity, Reputation
Kahn:Contextual //Value-added, Relevancy, Timeliness, Campleteness, Appropriate amount
Kahn:Representational //Interpretability, Ease of understanding, consistency, Concision
Kahn:Accessibility //Accessibility, Access security

LDpattern:Linked Data pattern
LDpattern :Identifier pattern //Hierarchical URTs, Literal Keys, Natural Keys,
//Patterned URIs, Proxy URTs, Shared Keys , URL Slug

IDpattern :Modelling pattern //Custam Datatype, Index Resources, Label Everything,
//Link Not Label, Milti-Lingual Literal, N-Ary Relation , Ordered List,
//Ordering Relation, Preferred Label , Qualified Relation, Reified Statement,
//Repeated Property, Topic Relation, Typed Literal

IDpattern :Publishing pattern //Annotation, Autodiscovery, Document Type, Edit Trail,
//Enbedded Metadata, Equivalence Links, Link Base, Materialize Inferences,
//Named Graphs, Primary Topic, Autodiscovery, Progressive Enrichment, See Also

LDpattern :Application pattern //Assertion Query, Blackboard, Bounded Description,
//Camposite Descriptions, Follow Your Nose, Missing Isn't Broken, Parallel Ioading,
//Parallel Retrieval, Resource Caching, Schema Annotation, Smushing, Transformation Query

0DP:Ontology Design Pattern
ODP:Structural ODP //Architectural ODP, ODP:Logical ODP
ODP:Iogical ODP //ILogical macro ODP, Transformation ODP

ODP:Correspondence ODP //Alignment ODP, Re-engineering ODP

ODP:Re-engineering ODP //ODP:Schema reengineering ODP
ODP:Schema_reengineering ODP
ODP:Content ODP, ODP:Reasoning ODP, ODP:Lexico-Syntactic ODP
ODP:Presentation ODP //Naming ODP, Annotation ODP

p. 12

7 Conclusion

This article has presented the top-level of an ontology organizing knowledge sharing
best practices, design patterns, evaluation criteria and evaluation measures in a
systematic, non-redundant and scalable way (e.g., by being based on distinctions on
information objects rather than on processes). Some other research works on this
subject mainly proposed lists of categories with, sometimes, some implementations
(e.g., via SPARQL). This work shows that these categories and implementations are
only particular cases which could sometimes be easily generalized. It also permits to
have a more synthetic view of the kinds of things that could or should be evaluated or
done during knowledge sharing, or proposed by knowledge engineering/sharing tools.
This ontology can be extended by Web users via the server which hosts it [xx]. This
ontology could then be used as an index for elements of other libraries or ontologies.
To that end, the bigger it will become, the more useful it will be.

Section 2 introduced the formalization of a model enabling the integration of
knowledge from various sources into a consistent and “at least minimally well
organized KB” which eases the filtering and evaluation of knowledge. Section 2 also
illustrated the use of “default rules’ to allow the combination of simple evaluation
functions into complex ones and the re-use of other agents functions. The distinction
made between the statements that can be contradicted and those which cannot
seems to be a useful element for knowledge editing/integration protocols to handle
cooperation between agents and encourage them to give the meta-statements
necessary to evaluate knowledge and the providers of this knowledge. The fact that
knowledge on the Semantic Web is full of implicit contradictions and redundancies,
very hard to evaluate, and often incorrect with respect to the OWL primitives that it
re-uses [27], may be an indication that such protocols and kinds of evaluations are
useful for the Semantic Web.

References

1. Palma A., Haase, P., Wang, Y., dAquin, M.: D1.3.1 propagation models and strategies.
Technical report, NeOn Deliverable D1.3.1 (2007)

2. Heath, T., Bizer C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis
Lectures on the Semantic Web: Theory and Technology, 1:1, pp. 1-136. Morgan &
Claypool (2011)

3. Guizzardi, G., Lopes, M., Baido, F., Fabo, R.: On the importance of truly ontological
representation languages, 1JISMD, 2010. ISSN: 1947-8186

4. Patel-Schneider, P.F.: A Revised Architecture for Semantic Web Reasoning. In: PPSWR
2005, LNCS, vol. 3703, pp. 32-36 (2005)

5. Genesereth, M.R,, Fikes, R.E.: Knowledge Interchange Format, Version 3.0. Reference
Manual. Technical Report Logic-92-1, Stanford University (1992)

6. Genesereth, M.R.: Knowledge Interchange Format. Draft proposed American National
Standard (dpANS), NCITS.T2/98-004 (1998)

7. Hayes, P, Menzel, C., Sowa, J.,, Tammet, T., Altheim, M., Delugach, H., Gruninger, M.
Common Logic (CL): a framework for a family of logic-based languages. I1SO/IEC IS
24707:2007

p. 13

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

Farquhar, A., Fikes, R., Rice, J.: The Ontolingua Server: aTool for Collaborative Ontology
Construction. International Journal of Human-Computer Studies (1996)

Borgo, S., Masolo, C.: Ontological Foundations of DOLCE. Handbook on Ontologies,
Springer, pp. 361-382 (2009)

Guarino, N., Welty, C.. Evauating Ontological Decisions with OntoClean.
Communications of the ACM, vol. 45(2), pp. 61-65 (2002)

Cyganiak, R., Delbru, R., Stenzhorn, H., Tummarello, G., Decker, S.: Semantic sitemaps:
Efficient and flexible access to datasets on the semantic web. In: 5th European Semantic
Web Conference (2008)

Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J. Describing linked datasets.
In: WWW?2009 Workshop on Linked Data on the Web (2009)

Maali, F., Erikson, J., Archer, P., DCAT Catalog Vocabulary. W3C Working Draft (2012)
Breuker, J., van de Velde, W. : CommonKADS Library for Expertise Modelling: Reusable
Problem Solving Components. |0OS Press (1994)

Dromey, G.: Scaleable Formalization of Imperfect Knowledge. In: AWCV'S, 2006, pp. 21-33.
(2006).

Pan, J.Z., Lancieri, L., Maynard, D., Gandon, F., Cuel, R., Leger, A.: Success Stories and
Best Practices. Deliverable D1.4.2v2 of KWEB (Knowledge Web), EU-1ST-2004-507482
Presutti V., Gangemi, A.: Content Ontology Design Patterns as practical building blocks
for web ontologies. In: ER 2008, Spain (2008) see http://ontol ogydesignpatterns.org

Dodds L., Davis |.: Linked Data Patterns — A pattern catalogue for modelling, publishing,
and consuming Linked Data, http://patterns.dataincubator.org/book/, 56 pages (2011)
Kahn, B. K., Strong, D. M., Wang, R. Y.: Information quality benchmarks. product and
service performance. Communications of the ACM, vol. 45(4), pp. 184-192 (2002)
Mcdonald, G.: Quality Indicators for Linked Data Datasets.
http://answers.semanti cweb.com/questions/1072/quality-indicators-for-linked-data-datasets (2011)
Flemming A., Hartig, O. Qudity Criteria for Linked Data Sources
http://sourceforgenetfgppsmediawiki/trdf/index phpitle=Quelity_Qriteria for_Linked Data sources (2010)
Mendes, P.N., Bizer, C., Young J.H., Miklos, Z., Calbimonte J.P., Moraru, A.: Conceptual
model and best practices for high-quality metadata. Delivery 2.1 of PlanetData, FP7
project 257641 (2012)

Bizer, C.: Quality-Driven Information Filtering in the Context of Web-Based Information
Systems. PhD dissertation (195 pages), Free University of Berlin, (2007)

Mader, C. Quality Criteria for SKOS Vocabularies
https://github.com/cmader/qSK OS/wiki/Quality-Criteria-for-SK OS-V ocabul aries (2012)
Firber, C. Data Quality Constraints Library.

http://semwebquality.org/documentati on/primer/20101124/ (2010)

Gomez-Pérez, A., Ciravegna, F.. SEALS EU infrastructures project — semantic tool
benchmarking. http://www.seals-project.eu/ (2012)

Hogan, A., Harthy, A., Passanty, A. Deckery, S., Polleres, A.: Weaving the Pedantic Web.
In: LDOW 2010

Pietriga E., Bizer C., Karger D., Lee R. (2006). Fresnel: A Browser-Independent
Presentation Vocabulary for RDF. In: ISWC 2006, LNCS, vol. 4273, pp. 158-171 (2006)
XX

XX

p. 14

